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Abstract

We consider individual identity as abstract common social kinship, and model it as the fuzzy
degree of membership to sets of individuals. We connect identity to propensity of cooperation as
modeled by a Prisoners’ Dilemma game played in pairs of individuals in a mixed population of
cooperators and defectors. Unlike in standard evolutionary game theory, individuals are identified
with set dependant strategies; their fuzzy identity is adjusted in reaction to success/insuccess as
measured by relative payoff. JEL classification number: C73, D01, Z13. Keywords: fuzzy identity,

cooperation, evolutionary game theory.

1 Introduction and motivation

The notion of identity has recently become central for economic theory: see, e.g., [1].

Identity itself is a complex polysemic notion. Metaphysically, identity may be seen as a paradigmatic
intrisic property ([4]); in the moral philosophy of decision theory, for example, it is related to the notion
of responsability in Sen’s consequentialism ([8]).

At another extreme, from the point of view of cultural anthropology, social philosophy, and again
ethics, identity is sometimes viewed as a relation of the individual to a community (e.g., [11], [3]).

In this note, identity is construed as cultural (lingustic, religious, ethnic...) resemblance of an indi-
vidual to others, or as partship in a community of kins. We employ this notion within a tradition of
evolutionary game theory, in the context of the emergence of cooperation in pairwise interactions between
individuals.

Identity is formalized here by the notion of membership of a set, and we make use of the abstractness
of the notion ([2]). To illustrate, if the definition of being a Christian, as a member of the set of Christians,

is not to be question begging, it will be necessary that the notion of a set of individuals is pre-assumed.
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However, no set ontology has any realistic grounds: no natural matter, for example, may be appealed to
in order to mark the difference between the President of Italy and the singleton set containing him as its
sole member. Therefore, the notion of identity we appeal to is not simply not intrinsic to the individual,
or to its environmental, or social, context; on top of that, it also concern a relation of the individual
to something abstract, i.e., to sets, and it is to be interpreted better as a cognitive element regarding
individuals.

An essential difference between evolutionary game theory ([9]), and game theory as a multi-person
rational decision theory stands in the relation between players and their actions, or pure strategies.
While in the latter traditional approach a player may implement one of a number of different actions,
evolutionary game theory, in which usually players are living species, essentially identifies the species
with some constant pattern of behaviour — or, more generically, a morphotype — which is, in principle,
irrespective of circumstances. It will then be up to evolutionary forces to regulate the diffusion of
morphotypes as a function of their success, and possibly drive them to extintion.

Models in evolutionary game theory have been used to study the emergence of cooperation in a
society of individuals, where cooperation is an avantage to everyone, but where each single individual has
a private incentive not to cooperate, whether or not the others do. Some of these models consider the
possibility that the structure of pairwise encounters between individuals is in the form of a two persons
Prisoners’ Dilemma, but these encounters are constrained by sets: each individual is to encounter all
and only the individuals belonging to the sets he also belongs to. Intuitively, if cooperators belong to
sets where cooperators abound, and defectors meet prevalently defectors, then the former receive a larger
average payoff, and cooperation may be overall more successful ([7], [5],[10], [6]).

The constraining set structure may receive alternative interpretations: ethologically, the set an indi-
vidual belongs to may be a site of encounters, or an “ecological niche”. Here, we wish to consider the
anthropological reading of the set as a simple representation of the structure of reciprocal recognition
between individuals, or the common “culture” of its members. Social identity of a single individual, then,
is identified with membership to a set. Much in line with the set theoretical formalization of abstract
properties, a religious, linguistic, or national identity of an individual is identified by his, or her, mem-
bership to communities of individuals with similar identities. Behaviour will be then aligned to abstract,
or cognitive, elements, because it will be a function of sets; and our fuzzy sets will not vary as a function
of degrees of membership of their elements.

On the other hand, one may consider that such identities are not always “crisp”, and that the sense
of belonging, say, to a religious community may come with a degree: in this paper, we formalize this
by fuzzy degrees of membership to the relevant sets. Alternatively, the degrees of membership may be

interpreted also as a “participation rate” in the site of encounters, by the individual.



2 The model

Consider a large population of individuals, each of them playing a Prisoners’ Dilemma game (PD) with
the others. For the sake of clarity in this exercise, consider the game to have cardinal payoffs, in the
following simple specification. Each player may Cooperate, or Defect. The cooperator incurs a cost ¢, and

benefits the opponent of b; the defector incurs no cost. Obviously, we assume b > c.

C D
Clb—cb—c| —cb (1)
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Given that D is a dominating action, if each individual plays the game with all others, then the
subpopulation of individuals, i.e., the species playing D outfits the C species, and cooperation does not
prevail.

Assume, for simplicity, that the population is organized into only two sets, A and B; let «; the degree
of membership of individual ¢ to set A, and similarly for 5, with respect to set B. We assume, also
out of simplicity, that o; + 8; = 1 for any one i; but the assumption may have some meaning under
both intended interpretations, if the identities are somehow complementary, or the participation rates
are constrained by a total amount of time.

We assume no structure on the identities/sets themselves; hence, the sets will not be closed under
union or intersection, even though individuals may belong to more than one set, with varying degrees.

If a; > 0.5, @ will be termed an a-individual; if 3; > 0.5, a B-individual.! We will characterize an
a-individual with parameter «, and a §-individual with the corresponding parameter §: therefore, an
a-individual 7 will belong to set A with degree «;, and to set B with degree (1 — «;); a S-individual j
will belong to A with degree (1 — Bj), and to B with degree ;. Let m, be the relative proportion of
a-individuals, and let w3 be the complementary proportion of S-individuals.

It is standard in evolutionary game theory to identify species of individuals with pure strategies;
but the set theoretical structure of encounters offers the flexibility to articulate behaviour with respect
to “identities”. Then, even if some individuals are characterized by an identity-independent behaviour,
others will cooperate in one set, and defect in the other. It will be natural to assume that, in the latter
case, cooperation is carried out in all, and only, encounters with individuals met in “one’s own” identity
set, whether or not the individual encountered is of one’s own same identity.

Naturally, species are not usually, for example, predators (or preys) uniformely in all encounters;

but game theoretical models may equally identify one species with one action, given that this may be

Mf o = 0.5, (or, equivalently, 3; = 0.5) ¢ will be both an a-individual, and a S-individual. This ambiguity of the limiting

case should cause no trouble.



interpreted asa predating, or as a predated, behaviour according to the different actions/species it is
paired with.

As specified in the introduction, instead, here we take the view of identity as a social identification
with a “community” of peers, and assume that the community, like sets, onthologically exists besides the
individuals who, albeit only partially, belong to it. Hence, we may no longer use other species’ actions to
change the interpretation of anyone’s, and we need to articulate a species in a variety of set dependant
actions.

Hence, “separating” a-individual cooperate in A, and defect in B, and implement “set dependant”
strategy CD; similarly, S-individual cooperate in B, and defect in A: the set dependant strategy DC.
“Pooling” individuals would either always cooperate (set independant strategy CC'), or always defect (set
independant strategy DD); but pooling individuals may be assumed away at this stage.

Each encounter will give the payoffs of the game as in table 1, but each payoff will be multiplicatively
weighted by the degrees of membership of the two players in the set “where” they meet. The weights
are to be interpreted either as the “time” portion each individual spends in the site, or as an identity
premium over the intrinsic payoffs of table 1. The total payoffs from encounters are assumed to be added

up, as follows:

uf? = o (0= e o), (=B (1 -a)bdD By 2
SR SURUETS () SRS DN (ER)

in an obvious notation.

e
I

Success of species will be measured, as it is common, by comparing the average payoff of each individual
with overall average payoff of the whole population. We assume that only success of separating strategies
will have a consequence on identity: presumably, individuals implementing pooling strategies are not
sensitive to one’s own identity. If the set dependant strategy CD of i is strictly successful, then «; will
increase; similarly, if the set dependant strategy DC of j is strictly successful, then §; will increase.
In the opposite cases, the corresponding degrees of identity move in the opposite direction. Hence, an
equilibrium is reached whenever all average individual payoffs are equal, or in the boundary cases of
identity degrees: 1 for successful individuals, and 0.5 for unsuccessful individuals.

To clarify, it is important to stress that, within the methodology of evolutionary game theory, indi-
viduals do not make strategic choices: hence, for example, an unsuccessful individual will not “switch”
set dependant strategy and lower his, or her, membership degree below 0.5. It may be up to evolution-
ary forces, eventually, to drive to extinction individuals who remain strictly unsuccessful after identity

adjustements.



From (2), given the existing proportion of species and given other individuals’ fuzzy identities, any
individual average payofl is linear in his/her own identity, as depicted in fig. 1.

b The DD and CC' segments are for reference only: they depict

the corresponding strategies’ average payoffs as a function of fuzzy
D membership, with « decreasing from 1 to 0, left to right, and, similarly
B, from right to left. A set independant defector i receives an intrinsic
payoff between b and 0, at each encounter. The extreme points of the
DD segment stand for the average weighted payoffs when i belongs

O
fully to set A, and set B, respectively. These depend on the individuals

segment is derived simply by shifting DD down by c. (The assumption

D
/ 05 encountered in the sets, and they are also between b and 0. The CC
C

) B-1 of a large population will guarantee that the two individuals will have
o = =

Figure 1: approximately the same encounters.)

Average payoffs of strategies CD and DC can be read as segments
CO and OC, respectively. It can be shown that average payoffs u{'? = ﬂjDC when o; = 3; = 0.5.
The picture assumes that a”P(o; = 1) < ﬂfc(ﬁj = 1): a pooling cooperator fully in B will fare

better than a pooling defector fully in A, the condition for success of cooperation discussed above. In our

context, given that pooling individuals have zero weight, this requires that,
bra@—; < (b—c)mpB_; — cmo (1 — @)

where @ stands for average identity of a-individuals, &_; stands for average identity of a-individuals
other than 4, and similarly for 3_;; or, in a large population:

_1—
c <3 Ta o

b—c T

(3)

Condition (3) implies that DC' increases scrictly with 5. Under this condition, if overall average
« is above the middle point, then the identity of S-individuals is unstable at levels around @, while a-
individuals are all driven down to a = 0.5. If @ is below the middle point, then the identity of a-individuals

is stable, and S-individuals are driven up to g = 1.

3 Equilibria

Equilibria can be studied more easily via representative individuals of the species. Then, say, a single

a-individual will be assigned weight 7, and similarly for a single g-individual with weight 7g.
Whether or not, in equilibrium, all individuals of the same species (i.e., with the same set dependant

strategy) have the same fazzy identity will depend on an analysis of stability, and it may be considered

later.



Given that pooling species have zero weight, then 7, + mg = 1. Throughout the computation, we
assume that 7, < 0.5 (hence, 73 > 0.5): the opposite case is obtained obviously by swopping symbols
uniformely.

The average payoffs of the two representative individuals, then, are

i, = (b—c)a’my—c(l—p)ars+b(l—a)prs (4)

i = (b—c)fms—c(l—a)fra+b(l—pB)ar,

We wish to carry out the numerical exercise of finding equilibria. To this purpose, let b = 9, and

¢ = 3. Then, equations (4) become

Uy = 60’1, —3(1—pB)ars+9(1—a)Brs (5)

g = 6815 —3(1—a)Bra+9(1—p)ar,

Equilibria can be computed by systems of “iso-identity” lines in the two-dimensional Cartesian space
of average payoffs, together with the diagonal condition %, = ug for internal solutions of fuzzy identity
steady states.

Let an iso-a(k, ) identity line be a function from @, to g, with 7, = m, and o = k, such that
la—k = Ua(B,a0 = k,mo =), as in (5), and g (8 = Uy " (Ga=k, @ = k,Tq =), 0 = k,mq = 7).

From the first of (5),
~ 3k(1 =) — 6k + U,
C3k(l-m) +9(1—k)(1—m)

hence, by substitution into the second of (5),

B

- k(1 — ) — 627 + e k(1 — 1) — 627 + e
ug = 6<3k(1—7r)+9(1—k)(1—k7r)> (1_”)_3(1_’“)(3k(1—w)+9(1—k)(1—k7r))”(6)

ol ()

The construction of an iso-3(k, ) identity line is similarly a function from @g to @q, with as—p =
ug(a, B =k, mq = 7), and g (a = ﬂgl (Up=k, b=k, mq =7), 0=k, mq = 7r) .
Again, from the second of (5),

 3km — 6k (1 — ) + Up—s
- Bkn+9(1-k)7

and

Bk —6k2(1— ) sy ) 3k — 6k2(1 — ) + Ug—
o = 6< 3k7r+9(1—k)7r5 k) ”_3(1_k)< 3/€7r—|—9(1—k)7rﬁ k>(1_”)+ 0

o (1- (e Tee) ) ra-m

Figure 8 shows on the left the map of iso-a(m, = 0.3, = k), for £k = 0.5 to k = 1 in six equal steps:
k€ {0.1,0.2,0.3,0.4,0.5}. Here variable = stands for u,, and variable y for ug.



Iso-a(m, = 0.3, = 0.5) is the bottom line, while iso-a(m, = 0.3, = 1) is the top line.
Correspondingly, we have on the right the map of iso-3(7, = 0.3,8 = k), for £k = 0.5 to k = 1. Here

variable = stands for ug, and variable y for uq.

4
,+
4 2 0 2 4 6 8 10| 4 2 0o 2 4 6 s 10
X
iso-a(mq = 0.3, = k) iso-B(me =0.3,8 = k)

®)

Iso-B(mo = 0.3, = 0.5) is the left most line, and iso-5(m, = 0.3, = 1) is the righ tmost line.
For further illustration, in figure 9 are the corresponding maps of iso-a(m, = 0.44,a = k), and

iso-f(mq = 0.44,a = k):

10
y
81
6
4 2 0 2 4 6 8 10| a4
X
iso-a(mq =044, 0 = k) iso-f(mq = 0.44, 8 = k)



3.1 Internal equilibria

Point (1.5,1.5) of the diagonal is salient, for all iso-a(7, = m,a = 0.5), and all iso-3(7, = 7,5 = 0.5),
m > 0, cross there, and it is therefore the inf of the half-open interval of egalitarian equilibria (a segment of
the diagonal) whose length depends on 7. Figure 10 depicts the two parts of the statement, respectively.

Again, x stands for 4, on the left hand side, and for ug on the right hand side; vice-versa for y.

iso-a(mg = m, a0 = 0.5) iso-B(my = m, 5 =10.5)
(10)

For ., = 0.3, for example, the top point of the segment of equilibria solves tig (ta; To = 0.3, = 0.5) =
liq, with payoffs (3.3,3.3), and 3 = 0.93. At 7, = %, the top equilibrium reaches payoffs (3.5,3.5), and
g=1.

The max of the equilibrium segment of equal payoffs is constrained by iso-a = 0.5 up to © = %,
and by iso-f = 1 afterwords. Hence, top equilibria for higher 7, must be computed along the iso-
B(re = m, B = 1), by solving @, (tg;7e =7, =1) = 4y. If 7 = 0.4, for example, the equilibrium
payoffs are (3.09, 3.09), with « = 0.57; and if 7 = 0.45, the equilibrium payoffs are (2.85,2.85), with o =
% . Further increase of 7, brings the top equilibrium non-monotonically down to (3.0, 3.0), for 7 = 0.5

anda=1.

Hence, 7, = % maximizes the top egualitarian equilibrium payoffs; here, identities are o = 0.5 and

B =1, and payoffs (3.5,3.5) are achieved.

2If o = 0, then iso-a lines are not defined, and equilibria are g = 632 for any f.



In order to spell out top equilibria at w, > %, take iso-f(m, =, 6 = 1):

3 r+9(1-Q)m
2 _
31— (1) (3(1)77—6(1) (1—w)+uﬁ_1> d—m)+

S +9(1— ()7

37 —6(1)° (1 —7) + Gp=1
+9 (1 ( S 90— (1)= )) (1) (1 —m)

Let payoffs be equal, and consider the explicit form of @ as a function of 7 (7 #£ 0):

21 3 33
u=—om—y —207r+47r2+9+I (11)
For 7w, < %, the max of equilibrium equal payoffs must be read on the iso-a (7, = m, @ = 0.5).

Again, take iso-a(m, = 7, = 0.5), let payoffs be equal, and consider @ as a function of 7 (7w # 0):

“ o= 3(05)(1-m) ~6(05)°r+a_\
U = 6(3(0.5)(1—7T)+9(1—(0.5))(1_ﬂ.)> (1—7)+

3(0.5) (1 —7) —6(0.5) 7 + 4
—3(1—-1(0.5)) <3(0.5) (1-7m)+9(1—(0.5))(1 —7T)> ™

3(0.5) (1 — ) — 6(0.5)° 7 + @
9 (1 - (3 05) (1 —m) +9(1 - (0.5)) (1 - m)) (05) 7

This solves as:

=15+ 67 (12)

Constraints (11) and (12) can now be plotted together in fig. 13:

i
y
34
2 -
1 -
0 —_— |
0.0 0.1 0.2 0.3 0.4 0.5
X
(13)




where x stands for 7, and y stands for the common max equilibrium payoffs.
The equilibrium segments at varying 7, mark the vertical distance between the horizontal line at 1.5
and the min value of the two constraints.

Along the linear constraint, @ = 0.5, and S increases from 0.5 to 1. After 7 = 3, 8 = 1, and «

1
3
increases from 0.5 to 1.

One can trace the relationship between o and 3 along internal equilibria by equating @, = ug in
(5), i.e., 6a%my —3(1 — B)amg +9(1 —a) frg = 68%15 — 3 (1 — ) Brg + 9 (1 — ) amy, and solving at

different levels of m, = 1 — mg, as in figure 11:

1.0 1
y
091

0.8 T

0.7 T

05 e
0.5 0.6 0.7 0.8 0.9 1.0

Here, x stands for «, and y for 5. Levels of 7, are, from left to right: 0.2, 0.3, %, 0.4, 0.45, 0.499.

3.2 Boundary equilibria

If internal equilibria provide equal payoffs, boundary equilibria may be inegalitarian. On the other hand,
these may be Pareto superior to egalitarian equilibria.
Boundary equilibria can be had with o = 0.5, 8 = 1, and @, < g, because of the assumed dynamics
of fuzzy identity. This implies that w, < %, for otherwise @, (@ = 0.5, =1) > g (a = 0.5, =1).
Boundary equilibria, for any 7, = 7, are solutions to the set of equations of iso-a = 0.5 and iso- = 1,

respectively:

_ 3(0.5)(1—7)—6(0.5) 214 2 3(0.5)(1—7)—6(0.5) 314
ug =6 (3(0$5)(%(77r)729(17(0.5;-)(1“771')) (I-m)=3(1-(05)) (3(0?5)(1(—@?9(17(0.5;)(17170) T+

3(0.5)(1—m)—6(0.5)* 7+
+9 (1 - (3(0$5)(i(—ﬂ)—QEQ(l(—(O?5))(1—7r))) (0.5) 7 (15)

_ 2 _
o = 6 (73”*6“3;””“3) 49 (1 - (73”*6%;””"[*)) (1— )

System (15) has four complex solutions; however, only one solution (the lowest real @g) respects both

constraints on degrees of identity: 0.5 < a < 1, 0.5 < g < 1. But one can compute that the explicit

10



forms of average payoffs 4, g as functions of 7 are in fact again simply linear: ug = 6 —7.57, and %, =

4.5-30m, 0<7< 1.

Numerical solutions of @, ug at boundary equilibria are computed in table 16, and compared with

values of @z along the iso-3 = 1 constraint for egalitarian equilibria, if this is extended to m <

m Uq ug ug at iso-3 boundary for interior equilibria, when m < %
0.001 | 4.497 | 5.9925 | 5.992

0.01 | 447 | 5.925 | 5.9201

0.05 | 435 | 5.625 | 5.6024

0.1 4.2 5.25 5.21

0.2 3.9 4.5 4.4463

0.3 3.6 3.75 3.7252

3 35 |35 3.5

Fig. 17 show how boundary solutions for m < % plot; obviously, the upper dashed line is for ug, and

the lower dashed line is for @, (dashed lines are to be read only up to = = =

1
3

).

6-
y
5T N\
A
= ~
- ~
4T T~ Y
N —
3T A
~N
~N
~N
Pas
1+
0 f f f + f i
0.0 0.1 0.2 0.3 0.4 0.5
X
Internal and boundary equilibria

(17)

Pareto superiority of boundary equilibria, whenever possible, is evident. However, given the cardinal

nature of the exercise, room is left for considerations of inequality aversions, which may alter the picture.
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4 Stability

We have made only qualitative assumptions on the dynamics of degrees of identity with respect to success;
therefore, we can only draw similarly qualitative conclusions on the stability of equilibria.

Consider the gradients of o and 8 around equilibria: if they are both convergent/divergent, then any
composition of the two is also convergent/divergent. Otherwise, further postulations should be made on
their relative weights in order to draw overall conclusions; in the absence of clear reasons, at this stage,
we refrain from making special assumptions.

Non-egalitarian boundary equilibria are clearly locally stable, for they can only be perturbed with
B=1—¢,and a =0.5+06,¢c >0, > 0; with ug > 1, the assumptions on dynamics of o and 3 imply
convergence to the equilibrium in both coordinates.

Egalitarian internal equilibria are always stable as far as a is concerned, on both sides, i.e., for ug < u,
and ug < uq; this is immediately seen on the maps of iso-«, for any 7, < 0.5.

Identity (3 is divergent when (3) is satisfied, and it is convergent when the opposite hold. The threshold

case is, in our example,
1—m,

% =4 i (18)
As far as the iso-fs across the diagonal are concerned, they are locally stable on one side iff they are
on the other as well, iff they are not orthogonal to the diagonal itself.
If 7, = 0.4, for example, then (18) implies that 5 = %a—f— %; when these two requirements are plugged
into the (5), then @, = %ag + %. This linear relation is plotted in fig. 19 as a dashed line, and it crosses
the iso-fs where these have slope —1: it marks the upper boundary of the basin of attraction with respect

to 5.

ol
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It is for 7, = % that ﬁ (is0-B = 0.5, 7o = %, (ia =ug)) = —1, i.e., at the point where iso-3 = 0.5
crosses the diagonal. This is the lowest point of the lowest equilibrium where an iso- have slope —1

at the point it crosses the diagonal. This threshold point moves upwards for higher 7., up to where

—L (is0-B = 1,74 =, (iy = Ug)) = —1 at k just above 0.45.

i
In general, one can pair constraint (18) with the equilibrium equation between the two (5), and obtain

that u = 2777% This is depicted in fig. 20 as the dashed upper boundary of averall stable equilibria, for

Ta 23
P
y
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37T /
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v
/7
2+ ~
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7
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-
//
_ -

0 —— : : |
0.0 0.1 0.2 0.3 0.4 0.5

X

(20)

5 Comments and conclusions

Equilibria we considered in this paper are reached via a dynamic which is not based on decision making
payoff maximization motives. It is for this reason that the postulation for the dynamic which we suggested
is exceedingly simple, and based on elementary common sense: in fact, adjustements in the degree of
identity are the result of a process which may be imputed not solely to the individual, but also to his
/her social environment. The degree of individual identity itself as a cognitive element may not be
individualistic, but to be interpreted as a common “stigma”, or “pride”.

The model is, at best, a useful fragment of a more complex picture, where, for example, elements for
incoming and outgoing processes are introduced. Natural selection of existing individuals may be called
up, in order to discriminate between individuals with different degrees of success. For example, it is not
obviuos that individuals relatively less successful should be driven to extenction: unequal, but Pareto
improving equilibria, may be a case in favour of absolute success. On the other hand, “immigration”
(and “emigration”) should be part of the dynamic of the population, and this may reactivate a process
of identity adjustments, which the calculated equilibria may have exhausted.

In the end, a full fledged dynamic study will be more interesting than the observation of equilibria,

especially in view of the interplay between stable and unstable forces.
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