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1 Introduction

At the current juncture, interest rates are historically low in most advanced economies.

This fact has led many economists to put forward the proposition that the natural interest

rate (r∗), which is the rate that equates savings and investment and closes the output gap,

has been falling over time. But given that the natural interest rate is a theoretical concept,

it has to be measured from data. Since the seminal work of Laubach and Williams (2003,

hereinafter LW2003), many papers have studied the measurement of this rate, showing

that it has dramatically fallen over recent decades in tandem with a slowdown in growth

(see for example Holston et al. 2017, hereinafter HLW2017). At the same time, the

common perception is that the usual measures of r∗ are generally imprecise and that the

associated uncertainty could prevent the practical use of the estimated natural interest

rate in policy applications.1

We contribute to this debate by first shedding light on the fundamental source of

uncertainty that plagues the workhorse model of LW2003. In particular, we show that

their model is generally able to produce very accurate estimates of r∗. However, the

precision of their estimates dramatically falls when either the output gap is insensitive

to the real interest rate gap (flat IS curve), or inflation is insensitive to the output gap

(flat Phillips curve). In those cases, it is not possible to uniquely identify the unobserved

growth and non-growth components of r∗ from the data. Unfortunately, those two cases

are empirically relevant according to a wide set of estimates reported in the existing

literature.

We show that an augmented version of the LW2003 model, which assumes the station-

arity of the interest rate gap, can identify both components of r∗ even when the IS and

Phillips curves are flat. Our assumption also allows us to identify r∗ using a univariate

local level specification which decomposes the observed real rate into its permanent and

transitory components, where the former closes the interest rate gap and stabilizes the

output gap and inflation. When we apply this alternative specification to historical data
1See for example Clark and Kozicki (2005), Weber et al. (2008), as well as recent papers by Hamilton

et al. (2016), Taylor and Wieland (2016), and Beyer and Wieland (2017).
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spanning more than a century for a set of advanced economies, we document a generalized

decline of the natural interest rate since the start of the twentieth century until the 1960’s,

followed by a rise and fall, with a peak around the end of the 1980’s. Since the local level

model is silent about the determinants of the estimated r∗, we shed some light on why

this rise and fall occurred by estimating a Panel Error Correction Model (ECM) using a

set of indicators as potential drivers of r∗. Our results provide suggestive evidence that

the rise and fall of r∗ could be attributed to the post-war baby boom, which generated a

temporary rise of the population share of young workers.

As we have already mentioned, the natural interest rate is not directly observable

because according to the definition by Woodford (2003), it represents the real interest

rate which would be observed in a full employment economy without nominal rigidities.

For this reason, empirical researchers have employed a variety of approaches to measure

it.2 The popular approach introduced in LW2003 consists of a semi-structural econometric

model whose equations are inspired by the key equations of the New Keynesian framework.

Specifically, their model consists of two main equations: an aggregate demand equation

(IS curve), which states that the gap between the observed real interest rate and the

natural interest rate affects the output gap; and an aggregate supply equation (Phillips

curve), which relates inflation to the output gap. The model is closed by assuming that

the natural interest rate is the sum of two unobserved nonstationary components: the

underlying trend growth of the economy, and a bundle of other factors unrelated to

growth (the so-called z component). However, the uncertainty surrounding the estimated

natural interest rate is very large, as pointed out not only by LW2003 but also by several

subsequent studies which have estimated their model or its variants.3

We dig into the mechanics of the LW2003 model and show that it is generally able to

produce very accurate estimates of r∗. However, the precision of the model drops in two
2The methods used in the literature range from time series models such as in Crespo Cuaresma et

al. (2004), Cour-Thimann et al. (2006), Lubik and Matthes (2015), and Hamilton et al. (2016), to full-
fledged structural models like the estimated DSGE in Giammarioli and Valla (2003), and more recently
in Barsky et al. (2014), Cúrdia et al. (2015), Del Negro et al. (2017), and Gerali and Neri (2018). We
refer to Giammarioli and Valla (2004) and Crespo Cuaresma and Gnan (2007) for more complete reviews
of the different approaches.

3See for instance Clark and Kozicki (2005), Kiley (2015), Beyer and Wieland, (2017), Lewis and
Vazquez-Grande (2017), HLW2017.
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specific circumstances. First, when the IS curve is flat. In that case, the output gap is

insensitive to the real interest rate gap, so that information about the output gap cannot

identify the non-growth component of the natural interest rate which affects the interest

rate gap. Second, when the Phillips curve is flat. In this other case, inflation is insensitive

to the output gap, so the former variable can identify neither the output gap nor potential

output. As a consequence, it is not possible to separately identify potential output from

the non-growth component of the natural interest rate.

In more technical terms, the model is said to be unobservable in those cases in which

it is not possible to uniquely identify the natural interest rate from the available data.

Originally introduced by Kalman (1960), observability is a fundamental concept of modern

control system theory. It measures the ability to infer the internal state variables of a

dynamic system given knowledge of the external outputs. In the context of linear time-

invariant systems, observability can be evaluated by checking the rank of the observability

matrix.4 The key intuition for this rank condition is that the problem of determining the

path of the state vector in a linear system can be simplified to the problem of finding its

initial condition: once we know it, we can recover the full path of the state variables given

the transition equation and knowledge of the disturbances. Importantly, observability is

a property of the model related to the state variables, rather than the system coefficients.

Thus, a researcher cannot solve the lack of observability, which is intrinsic to the system,

by merely adopting a Bayesian perspective in estimating those coefficients.

Unfortunately, the slopes of the IS and Phillips curves estimated in the literature tend

to be close to 0. This fact was already documented in LW2003 using data for the United

States, and has been confirmed in several empirical papers which estimate their model

for a number of advanced economies, as reported in Table 3 in the Appendix. In those

circumstances, the LW2003 model is close to failing the observability condition, which

implies a very imprecisely estimated natural interest rate driven by large uncertainty of

the filter rather than the parameters.

To solve this problem, we start from the observation that the LW2003 model treats

the observed real interest rate as exogenous, therefore leaving the dynamic process for the
4See for example Harvey (1989) for a precise definition, as well as the examples in the Appendix.
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interest rate gap undefined. But as soon as one imposes the stationarity of the interest

rate gap, we show that one can identify both the growth and non-growth components of

r∗ even when the IS and Phillips curves are flat. The extra identification restriction comes

from the fact that the observed real rate can be decomposed into a transitory component

(interest rate gap) and a permanent component (the natural rate). A direct implication

of our result is that, if a researcher is interested in estimating r∗ but not necessarily its

growth and non-growth components, then a valid alternative is to estimate a univariate

local level model (see Harvey, 1989), which decomposes the observed real interest rate

into its permanent and transitory components. Thus, the rationale behind our approach

is that the interest rate gap is the stationary deviation between the observed rate and

its unobserved permanent component. Hence, the interest rate gap can be closed if and

only if the observed real interest rate coincides with its permanent component. Moreover,

under a general class of New Keynesian models, output gap and inflation get completely

stabilized by setting the interest rate gap to zero on a period-by-period basis. For this

reason, we can think of the permanent component of the observed real interest rate as a

measure of r∗.

Still, the local level model cannot identify the growth and non-growth components of r∗

because it exploits data on the interest rate only. Nevertheless, given that the augmented

model is observable, it is robust to situations in which the empirical estimates suggest flat

IS and Phillips curves. Perhaps more importantly, when we apply our proposed approach

to post-war U.S. data, the local level specification produces a precise estimate of r∗ while

the LW2003 model is close to unobservable.

Next, we collect historical data at annual frequency over the period 1891-2016 for a set

of seventeen advanced economies. Such a sample is likely to produce flat IS and Phillips

curves for two reasons: (i) the low frequency of the annual data may be too coarse to

identify any relation among output gap, interest rate gap, and inflation; and (ii) the long

time span may imply structural breaks in the relationships among variables. For those

reasons, we estimate the natural interest rate of each economy, thereby using international

data to externally validate our local level specification. We find a common decline in r∗

across countries since the start of the twentieth century until the 1960’s. We also find a
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subsequent statistically significant rise and fall, which peaks around the end of the 1980’s.

Importantly, this rise and fall is already visible in the actual data on real interest rates

across countries. Jordà et al. (2017b) also document a rise and fall in the real safe rate,

pointing out that, from a long-run perspective, the relevant question is why the safe rate

was so high in the mid-1980s, rather than why it has declined so much since then.

Finally, we explore the reasons behind the documented rise and fall. As we have

mentioned before, the local level model, which uses data on real interest rates only, is

silent about the drivers of r∗. However, by exploiting the cross-country variation of the

estimated r∗ we document a large synchronization of natural rates. Interestingly, we also

find that countries which feature larger falls in the natural rate since the 1990’s are also

those for which the rate increased more over the period 1960’s – 1980’s. This evidence

suggests that both the rise and the fall of r∗ may be the result of a common set of drivers,

and that any explanation that seeks to explain the recent fall in interest rates should also

be consistent with explaining the precedent rise. We shed some light on this issue by

estimating a Panel ECM which postulates a long-run relationship between the observed

real interest rate and a set of indicators. The intuition is that, if there exists a long-run

relation among the unobserved natural rate and its drivers, then it should also hold among

the observable counterparts. The real interest rate predicted by the model can thus be

used as a proxy for the natural interest rate. In this respect, we show that the Panel

ECM predicts a rate which closely follows the r∗ estimated by the local level model.

Data availability and endogeneity concerns limit our analysis to a relatively small set

of plausibly exogenous drivers of r∗: productivity growth, demographic composition, and

a measure of risk. Through the lens of the model, productivity growth plays a negligible

role in driving the rise and fall of the natural rate of interest. Specifically, we document a

tenuous link of productivity growth with the real interest rate, thus complementing results

in Lunsford and West (2017) for the United States. This result also supports those studies

that have emphasized a tenuous link between trend growth of the economy and the real

interest rate, such as Clark and Kozicki (2005) for the United States, and Hamilton et

al. (2016), who used historical data for a large set of OECD economies. In contrast,

we find that risk is related to important developments in r∗, and more specifically, that
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it accounts for a substantial part of the fall since the 1990’s. This result is in line with

Gerali and Neri (2018), who find that risk premium shocks have reduced the natural

rate in both the United States and the euro area. In this respect, our results are in line

with Del Negro et al. (2017), according to whom the safety and liquidity premia have

negatively affected the U.S. natural interest rate. Last, but not least, we find that the

changing demographic composition accounts for the bulk of the rise and fall in the natural

interest rate. Specifically, the rise can be explained by the post-war baby boom, which

temporarily increased the share of young workers in the population. Once the baby boom

ends, the share of young workers goes back to its previous negatively trended path, which

in turn leads to a process of population ageing. This finding provides empirical support

to recent studies which have emphasized the role of demographics for the evolution of the

real interest rate (Aksoy et al. 2015; Carvalho et al. 2016; Favero et al. 2016a, 2016b;

Gagnon et al. 2016; Lisack et al. 2017; Ferrero et al. 2017; Rachel and Smith, 2017).

The rest of the paper is organized as follows. In section 2, we study the cases under

which the LW2003 model fails to accurately estimate r∗. Then, in section 3, we introduce

our alternative approach for estimating r∗, which we apply to historical international

data. Finally, we present our conclusions in section 4. Auxiliary results are gathered in

appendices.

2 Why is the Uncertainty on r∗ so Large?

In this section we document the large uncertainty surrounding the estimated natural in-

terest rate by estimating the HLW2017 model, which is a recent version of the LW2003

framework, using data for the United States. In particular, we show that the large impreci-

sion mostly stems from the uncertainty in the filter. To understand why filter uncertainty

may be so large, we dig into the mechanics of the model and study its observability prop-

erties. We show two cases in which the model cannot recover the unobserved natural

interest rate given the data: (i) if the output gap is insensitive to the interest rate gap

(flat IS curve); and (ii) if inflation is insensitive to the output gap (flat Phillips curve).

These cases are empirically relevant, according to estimates found in the literature. This
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implies that the model is close to being unobservable, which means that the unobserved

natural rate can barely be recovered, and only with large filter uncertainty.

2.1 Uncertainty in the Holston, Laubach, and Williams Model

The building block of the model consists of two main equations

ỹt = αy,1ỹt−1 + αy,2ỹt−2 − γ(rt−1 − r∗t−1) + εỹt , (1)

πt = αππt−1 + (1− απ)πt−2,4 + κỹt−1 + επt , (2)

where the aggregate demand equation in (1) posits that the output gap ỹt, defined as the

deviation of the (log-) real GDP, yt, from its unobserved potential level, y∗t , depends on

its own lags and past realizations of the real interest rate gap, defined as the deviation of

the observed real interest rate, rt, from the natural interest rate. In turn, the aggregate

supply equation in (2) links the observed inflation rate, πt, to its own lag, to the average

of its second to fourth lags, πt−2,4, and to the lagged output gap. There are two serially

and mutually uncorrelated shocks, εỹt and επt , which affect the output gap and inflation

respectively, whose variances are denoted by σ2
ỹ and σ2

π.

In turn, the unobserved natural interest rate depends on two unobserved processes,

r∗t = 4gt + zt, (3)

where 4gt is the annualized growth of the economy, and zt is a process which captures

other determinants unrelated to growth. The unobserved processes follow the laws of

motion given by

y∗t = y∗t−1 + gt−1 + εy
∗

t , (4)

gt = gt−1 + εgt , (5)

zt = zt−1 + εzt , (6)

where equation (4) defines the law of motion of potential output, which depends on its

past lag and on lagged trend growth of the economy, gt−1. In turn, equations (5) and (6)

state that the trend growth of the economy and the zt component follow random walk

7



processes. There are three serially and mutually uncorrelated disturbances, εy
∗

t , εgt , and

εzt , whose respective variances are σ2
y∗ , σ2

g , and σ2
z . Given this specification, the (log-) real

GDP and its potential level are integrated processes of order 2, while the natural rate of

interest is I(1), being the sum of two random walk processes.

The model can be cast in state-space form and the estimation of parameters and

unobserved states can be done through the application of the standard Kalman filter.

When estimating the model, LW2003 encountered a so-called pile-up problem, whereby the

estimated variances of the innovations to the nonstationary processes zt and gt have point

mass at zero even though their true values are positive (see Stock, 1994, and Laubach,

2001). To avoid this problem, HLW2017 employ an estimation method which proceeds

in sequential steps. The first step consists in estimating a simpler model to recover a

measure of potential output, which omits the real rate gap term from equation (1) and

assumes that the trend growth rate is constant. The Stock and Watson’s (1998) median

unbiased estimator of λg = σg

σy∗
is obtained by testing for a structural break with unknown

break date in equation (4). The second step amounts to imposing the estimated value of

λg from the first step, followed by the inclusion of the real interest rate gap in the output

gap equation under the assumption that zt is constant. Again, the Stock and Watson’s

(1998) median unbiased estimator of λz = γσz

σỹ
is obtained by testing for a structural

break with unknown break date on the IS curve of equation (1). The third and final step

consists of imposing the estimated value of λg from the first step and λz from the second

step, and estimating the full model by Maximum Likelihood. We report the procedure in

detail in the Appendix.

Following this approach, we estimate the model using U.S. quarterly data over the

period 1960Q3-2016Q3. We compute confidence intervals using Hamilton’s (1986) Monte

Carlo procedure that accounts for both filter and parameter uncertainty, whose details we

provide in the Appendix. Figure 1 reports the estimated r∗ jointly with 90% probability

bands. As can be seen, the natural rate has declined over time. Nevertheless, it is

estimated with large imprecision, as already emphasized by LW2003, as well as in more

recent studies.5
5See for instance Clark and Kozicki (2005), Kiley (2015), Beyer and Wieland (2017), Lewis and
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Figure 1: U.S. natural rate of the HLW model: estimate and 90% bands

Notes: quarterly data, 1961Q2-2016Q3. Estimated r∗ jointly with 90% confidence bands. Bands reflect both filter and

parameter uncertainty, and are computed using Hamilton’s (1986) approach with 2000 Montecarlo replications of the

parameter vector.

The question that we pose is: why is uncertainty so large? Imprecise estimates could

be either due to large parameter uncertainty, because the true values of the parameters are

unknown and therefore they are estimated with some error, or due to filter uncertainty,

because the realizations of the state vector are also unknown. To quantify the relative

importance of uncertainty on the filter and on the parameters, we recompute the bands as

follows: to isolate the role of filter uncertainty, we compute the bands without accounting

for parameter uncertainty as detailed in the Appendix, and vice versa for assessing the role

of parameter uncertainty. The results of this exercise are reported in Figure 2, which plots

the estimated r∗ and 90% confidence bands, which reflect either parameter uncertainty

in panel (a), or filter uncertainty in panel (b). Uncertainty stemming from the filter is

dramatically larger than parameter uncertainty, which suggests that filter uncertainty is

the reason why the natural rate gets imprecisely estimated.

Vazquez-Grande (2017), and HLW2017.
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Figure 2: Filter and parameter uncertainty in the HLW model

(a) Parameter uncertainty (b) Filter uncertainty
Notes: quarterly data, 1961Q2-2016Q3. Estimated r∗ jointly with 90% confidence bands. Bands in the left-hand side chart

reflect parameter uncertainty; bands in the right-hand side reflect filter uncertainty. Bands are computed using Hamilton’s

(1986) approach with 2000 replications on the parameter vector.

According to equation (3), the natural interest rate is defined as the sum of two com-

ponents: (i) the (annualised) trend growth of the economy; and (ii) the zt process, which

captures all other factors besides growth that could affect the natural rate. Importantly,

both components are unobserved and therefore will be estimated with error. We compute

bands associated to filter uncertainty for these two components. Figure 3 plots the esti-

mates for the trend growth and the zt process, where bands are computed by considering

just the uncertainty on the filter. Filter uncertainty associated with the trend growth

is relatively small compared to the one of the zt component, whose bands are markedly

larger.

10



Figure 3: Filter uncertainty in the HLW model: components of r∗

(a) Trend growth (b) Other factors
Notes: quarterly data, 1961Q2-2016Q3. Estimated annualised trend growth and zt component jointly with 90% confidence

bands. Bands in the left-hand side chart reflect filter uncertainty associated to annualised trend growth; bands in the

right-hand side reflect filter uncertainty associated to the zt component.

So in summary, the natural interest rate of the HLW model is very imprecisely es-

timated, mainly because one of its components, the zt process, is imprecisely estimated

too. But what drives the large imprecision of the zt component? To shed light on this

question, in the rest of the section we provide an in-depth analysis of the structure of

the HLW model, which will help us understand under which circumstances the model

fails to work correctly. To do so, we resort to the notion of observability introduced by

Kalman (1960), a fundamental concept of modern control system theory which measures

the ability to precisely infer the inner states of a system given the available data.

2.2 Observability in the Holston, Laubach, and Williams Model

Consider the following state-space representation of the HLW model, in which the mea-

surement equation is given by

[
yt
πt

]
=
[

1− αy 1 + 4γ γ
−κ 0 0

]
︸ ︷︷ ︸

Z

 y∗t−1
gt−1
zt−1

+
[
αy 0 0 −γ
κ απ 1− απ 0

]
︸ ︷︷ ︸

D


yt−1
πt−1
πt−2|4
rt−1

+
[
εỹt + εy

∗

t

επt

]
,
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where for ease of exposition we have assumed that only one lag of the output gap enters

the right-hand side of the IS curve.6 In turn, the transition equation reads y∗t
gt
zt

 =

 1 1 0
0 1 0
0 0 1


︸ ︷︷ ︸

T

 y∗t−1
gt−1
zt−1

+

 εy
∗

t

εgt
εzt

 .

The model posits that two endogenous observables, yt and πt, are linked through the Z

matrix to three unobserved states given by potential output, y∗, trend growth, g, and

other factors which may affect the natural rate, z. Finally, the unobserved states evolve

over time according to the transition matrix T.7

Suppose that the particular values of all system matrices are known with certainty, as

well as the realizations of the disturbances. In this context, we ask the question: can we

learn about the dynamic behavior of the vector of unobserved states by using information

about all the observables and disturbances? The key condition which allows the state

vector to be determined exactly is that the system should be observable. In the context

of linear systems, a necessary condition for the system to be observable is that the rank

of the observability matrix is equal to the number of unobserved states; see for example

Harvey (1989). Specifically, the observability matrix of a linear system with s unobserved

states is given by

O ≡



Z
ZT
ZT2

...
ZTs−1

 , (7)

and the system is observable if Rank (O) = s. Details on the derivation of this condition
6By having just one lag of the output gap, we are able to obtain a minimal state space representation

of the model which features just three unobserved states. Nevertheless, we report in the Appendix a
more complex case with two lags that provides the same results.

7This specific state space representation introduces some non-zero correlation across disturbances of
the measurement and state equations, ut and vt. This representation is a minimal realisation, that is,
it minimizes the length of the state vector, and it helps in deriving analytical results. Nonetheless, the
specific choice of the state space representation does not change results in terms of observability of the
original model, as we discuss in the Appendix. Moreover, when estimating the HLW model, we employ a
different state space form according to which the disturbances ut and vt are uncorrelated; see details in
the Appendix. In any event, when the measurement and transition equation disturbances are correlated,
one can still employ an appropriately modified Kalman filter by following the steps in Harvey (1989,
chap. 3).
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are in the Appendix. In the HLW model, in particular, the observability matrix reads

O =

 Z
ZT
ZT2

 =



1− αy 1 + 4γ γ
−κ 0 0

1− αy 2 + 4γ − αy γ
−κ −κ 0

1− αy 3 + 4γ − 2αy γ
−κ −2κ 0


. (8)

Therefore, the rank of the observability matrix depends on three model parameters: (i)

the coefficient of the lagged output gap in the IS curve, αy; (ii) the sensitivity of inflation

to past output gap, κ; and (iii) the parameter governing the sensitivity of the output gap

to the real rate gap, γ. If the rank of O in (8) is less than three, which is the number of

unobserved states, then some elements of the state vector are unrecoverable by the data.

By inspecting the observability matrix, we can easily find two cases of rank deficiency:

Case 1. The IS curve is flat (γ = 0)

If the elasticity of current output gap to past real interest rate gap is zero, then the IS

curve is flat. In that case, the observability matrix becomes

O =



1− αy 1 0
−κ 0 0

1− αy 2− αy 0
−κ −κ 0

1− αy 3− 2αy 0
−κ −2κ 0


,

and the third column, which is associated to the zt process, reduces to a vector of zeros.

Therefore, in this case Rank(O) < 3 and the model is not observable. In particular, it is

not possible to recover the path for the zt process. Since the output gap is insensitive to

the real interest rate gap, data on the output gap do not provide information to identify

the zt process, which is a component of the natural interest rate. We can still uniquely

determine the paths for potential output and trend growth, as long as either the Phillips

curve is not flat (κ 6= 0) or the autoregressive coefficient of the output gap satisfies

|αy| < 1.

Case 2. The Phillips curve is flat (κ = 0)

If the elasticity of current inflation to past output gap is zero, the Phillips curve is flat.
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Then, the observability matrix becomes

O =



1− αy 1 + 4γ γ
0 0 0

1− αy 2 + 4γ − αy γ
0 0 0

1− αy 3 + 4γ − 2αy γ
0 0 0


,

and we can observe that the first and third columns are linearly dependent, with the third

column equal to γ/(1 − αy) times the first column. This implies that it is not possible

to separately identify potential output from the zt component, while it is still possible to

identify the process for the underlying trend growth. Therefore, Rank(O) < 3, and the

model is not observable either.

Thus, we have provided two examples in which the HLW model fails to meet the

required observability condition: (i) Flat IS curve: the sensitivity of the output gap to

the real interest rate gap is zero (γ = 0); and (ii) Flat Phillips curve: the sensitivity

of inflation to the output gap is zero (κ = 0).8 Now the question is: what do the data

tell us about the magnitude of these sensitivities? Figure 4 reports the frequencies of

estimates of γ and κ across several studies that estimate the LW2003 model or variants of

it using data for several advanced economies. Table 3 reports further details about these

estimates. As can be seen, the estimated sensitivities are very small and close to zero, so

very flat IS and Phillips curves seem to be more the rule than the exception.
8This result holds also when considering a more complex model in which two lags of the output gap

appear in the IS curve, as shown in the Appendix. Moreover, if the zt component is assumed to be
stationary, the model is still unobservable when the IS curve is flat (γ = 0), but it becomes observable
when the Phillips curve is flat (κ = 0), provided, of course, that the IS curve is not flat (γ 6= 0). We
report further details in the Appendix.
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Figure 4: Steepness of IS and Phillips curves: estimates in the literature

Notes: Frequency of estimates of γ and κ across studies as reported in Table 3 in the Appendix. γ and κ measure the

steepness of the IS and Phillips curves, respectively.

To study the practical implications of the lack of observability, we consider the mean

squared error matrix of the state vector,

Pt|t−1 ≡ E
[(

xt − x̂t|t−1
) (

xt − x̂t|t−1
)′]

,

where x̂t|t−1 is the one-sided filtered estimate of the state vector. Next, we calculate the

stationary matrix using the estimated parameters for the United States and the prediction

and updating equations,

Pt|t−1 = TPt−1|t−1T′ + RQR′, t = 1, . . . , T

Pt|t = Pt|t−1 −Pt|t−1Z′F−1
t ZPt|t−1,

where Ft = ZPt|t−1Z′ + H, setting a diffuse prior for P0|0. Finally, we compute the filter

variance of the natural rate and its components over a grid of values for γ and κ, with

the remaining parameters set to the estimated values reported in Table 2.
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Figure 5: Filter uncertainty and slopes of the IS and Phillips curves

Notes: mean squared error of the unobserved states as a function of γ and κ, where γ and κ measure the steepness of the

IS and Phillips curves, respectively.

Figure 5 reports the mean squared error of the unobserved states as a function of γ

and κ. Filter uncertainty associated to the natural interest rate is small for large values

of γ and κ. Given that we have previously shown that the bulk of the imprecision in the

HLW model is due to filter uncertainty, we can conclude that for substantially large values

of those sensitivities, the HLW model precisely estimates r∗. However, when either γ or κ

approaches zero, the uncertainty associated with r∗ dramatically increases, mostly because

of the rise in the uncertainty associated with the zt component. As we have mentioned

before, zt is the component which affects the uncertainty of the natural interest rate the

most, while the process for trend growth features relatively small uncertainty regardless

of the values of γ and κ.

3 An Alternative Approach to Extract r∗

3.1 A Local Level Model for the Real Interest Rate

We have shown that the HLW model imprecisely estimates the natural interest rate when

the IS and the Phillips curves are close to being flat, because the model is close to being

unobservable in those circumstances. How can we the precisely estimate r∗? To answer
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this question, we start from the observation that the HLW model treats the observed

interest rate, rt, as an exogenous variable which determines the interest rate gap of the IS

equation in (1). Given the exogeneity of the observed real rate, the dynamic properties

of the gap between the observed rate and the natural rate are unknown, as well as the

dynamics of the output gap in equation (1). In practical terms, the HLW model does

not guarantee that either the interest rate gap or the output gap are stationary. In what

follows, we explore the observability properties of an alternative version of the HLW model

which explicitly restricts the two gaps to be stationary.

Specifically, we augment the original HLW model by adding an equation which defines

the real interest rate gap, r̃t, as the stationary deviation between the real rate from its

unobserved permanent component,

r̃t = rt − r∗t , (9)

where the natural interest rate, r∗, is defined in equation (3). For simplicity of exposition,

we assume that the interest rate gap follows the stationary AR(1) process

r̃t = αrr̃t−1 + εr̃t , (10)

with |αr| < 1, and εr̃t is a white-noise disturbance, uncorrelated with the other shocks of

the model, whose variance is σ2
r̃ .

This augmented version of the HLW model can also be written in state-space form,

with the measurement equation given by yt
πt
rt

 =

 1− αy 1 + 4γ γ
−κ 0 0
0 4(1− αr) 1− αr


︸ ︷︷ ︸

Z

 y∗t−1
gt−1
zt−1

+

+

 αy 0 0 −γ
κ απ 1− απ 0
0 0 0 αr


︸ ︷︷ ︸

D


yt−1
πt−1
πt−2|4
rt−1

+

 εỹt + εy
∗

t

επt
4εgt + εzt + εr̃t

 ,

where, once again we have assumed for simplicity that only one lag of the output gap

enters the right-hand side of the IS curve. The key difference with respect to the structure
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of the original HLWmodel is that the observed real rate is now endogenous, and it depends

on the unobserved states through the Z matrix. In contrast, the transition equation is

essentially unchanged with respect to the standard HLW model, being given by y∗t
gt
zt

 =

 1 1 0
0 1 0
0 0 1


︸ ︷︷ ︸

T

 y∗t−1
gt−1
zt−1

+

 εy
∗

t

εgt
εzt

 .

The observability of the augmented HLWmodel now depends on the rank of the matrix

O =

 Z
ZT
ZT2

 =



1− αy 1 + 4γ γ
−κ 0 0
0 4(1− αr) 1− αr

1− αy 2 + 4γ − αy γ
−κ −κ 0
0 4(1− αr) 1− αr

1− αy 3 + 4γ − 2αy γ
−κ −2κ 0
0 4(1− αr) 1− αr


. (11)

Compared to the observability matrix of the original HLW model in (8), this matrix

includes three additional rows (the third, the sixth, and the ninth), which also depend on

the autoregressive coefficient of the interest rate gap, αr. Since the interest rate gap is

stationary, |αr| < 1, those three rows are nonzero and they help to identify the unobserved

states of the model. To illustrate our claim, suppose that both Phillips and IS curves are

flat, so that γ = 0 and κ = 0. In this extreme case the observability matrix in (11)

becomes

O =



1− αy 1 0
0 0 0
0 4(1− αr) 1− αr

1− αy 2− αy 0
0 0 0
0 4(1− αr) 1− αr

1− αy 3− 2αy 0
0 0 0
0 4(1− αr) 1− αr


.

Importantly, the third column, which is associated to the zt process, is a nonzero linearly

independent vector when the interest rate gap is stationary, |αr| < 1, so that it is possible

to recover the path for the zt process. More generally, as long as both the interest rate gap
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and the output gap are stationary, Rank(O) = 3, so all unobserved states can be recovered

from the data. Notice that if the interest rate gap were nonstationary, the process for the

observed real interest rate would be the sum of two unobserved nonstationary processes,

the natural interest rate and the rate gap, which would not be separately identifiable. In

that particular case, the observability matrix in (11) would coincide with the one of the

original HLW model in (8).

Therefore, it is possible to identify the natural interest rate even when both IS and

Phillips curves are flat under the assumption that the interest rate gap is stationary. The

identification restriction comes from the fact that the observed real rate is decomposed

into a stationary component (the interest rate gap) and a nonstationary component (the

natural rate).

Indeed, the natural rate of the HLW model is nonstationary and follows a random

walk process. This can be easily seen by combining equations (3), (5) and (6), which

yields

r∗t = r∗t−1 + εr
∗

t εr
∗

t ∼ N(0, σ2
r∗), (12)

where σ2
r∗ = 16σ2

g +σ2
z . This observation implies that if we are interested in estimating r∗

but not necessarily its components, then we can resort to a univariate local level model

(Harvey, 1989) based on equations (9), (10) and (12), which decomposes the observed real

interest rate into its permanent and transitory components. In this setup, the interest

rate gap can be closed if and only if the observed real rate coincides with its permanent

component. In addition, for a general class of New Keynesian models, output gap and

inflation get stabilized when the interest rate gap is zero. For example, consider the

non-policy block of the model in Galí (2008, chap. 3),

ỹt = Et [ỹt+1]− γr̃t, (13)

πt = βEt [πt+1] + κỹt, (14)

which consists of the dynamic IS equation (13) and the New Keynesian Phillips curve
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(14). We can solve the system composed by equations (13), (14) and (10) to obtain

ỹt = − γκ

(1− αr)(1− αrβ) r̃t,

πt = − γ

1− αr
r̃t,

so that both the output gap and inflation depend on the interest rate gap. By setting the

real rate gap to zero period-by-period, both the output gap and inflation get completely

stabilized. As a result, we can think of the permanent component, r∗t , as a measure of

the natural interest rate.

Compared to the standard HLW model, though, the local level model can always

identify r∗ but not its growth and non-growth components, because it exploits data on

the real interest rate only. To see why, consider the observability matrix of the system

implied by equations (9), (10) and (12),

O =
[

1 1
1 αr

]
.

In this context, it is possible to recover the two unobserved states (the natural interest

rate and the interest rate gap) if the rank of the observability matrix is equal to two, which

always happens given that the interest rate gap is restricted to be stationary. Therefore,

the local level model provides a valid alternative to the HLW model in those cases in

which the latter is almost unobservable, which happens when either the IS or Phillips

curve is flat.

To confirm this point, we compute the filter uncertainty associated to the natural

interest rate implied by the original HLW model, the augmented HLW model, and the

local level model, for different degrees of steepness of the IS and Phillips curves.9

Figure 6 reports the mean squared error of r∗ as a function of γ and κ for the HLW,

augmented HLW, and local level models. When the IS and Phillips curves are relatively

steep, all models feature small filter uncertainty. When both curves are close to being flat,
9As before, for each model we obtain the stationary mean squared error matrix of the state vector using

the corresponding prediction and updating equations. For comparability across the models, parameters
of system matrices are set to estimated values from the augmented HLW model. We then compute the
MSE matrices for a grid of values for γ and κ, which are the parameters that measure the steepness of
the IS and Phillips curves, respectively.
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Figure 6: Filter uncertainty of r∗ across different models

Notes: mean squared error associated with the natural interest rate, r∗, as a function of γ and κ, where γ and κ measure

the steepness of the IS and Phillips curves, respectively.

in contrast the uncertainty implied by the HLW model dramatically increases, because

the model get close to being unobservable. On the other hand, both the augmented HLW

and local level models continue to feature very little uncertainty, which increases as γ and

κ get close to zero in the case of the augmented HLW model, but which remains constant

in the case of the local level model. Overall, both the augmented HLW model and the

local level model are valid alternatives to the HLW model in those cases in which the

observability of the latter is at stake. Therefore, both approaches may complement each

other. For the specific purpose of our subsequent analysis, which spans more than one

century of data, we opt for the local level model which is more robust to potential model

misspecification, a key issue for the conduct of monetary policy frequently emphasized in

the literature (see for instance Levin and Williams, 2003, or Orphanides and Williams,

2007).

To gauge the properties of the natural interest rate r∗ extracted by the local level

model, we use data on the U.S. ex-ante real interest rate as previously employed for the

estimated HLW model. As in HLW2017, we solve any potential pile-up problem by first

applying the Stock and Watson’s (1998) median unbiased estimator of λr = σr̃

σr∗ (1−αr̃) ,
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Figure 7: U.S. natural rate estimates: HLW and local level models

Notes: quarterly data, 1961Q2-2016Q3. Solid blue line refers to r∗ estimated by the local level model. Dotted red line

refers to r∗ estimated by the HLW model. 90% confidence bands reflect both filter and parameter uncertainty, and are

computed using Hamilton’s (1986) approach with 2000 replications of the parameter vector.

and then estimating all remaining model parameters for given λ̂r. Finally, we compute

confidence intervals using Hamilton’s (1986) Monte Carlo procedure, which accounts for

both filter and parameter uncertainty.

Figure 7 reports the estimated natural rate of interest obtained by the local level model,

as well as the r∗ obtained by the HLW model. Both models predict a fall of the natural

interest rate since the 1980’s from roughly 3 percent to one percent. Interestingly, though,

the local level model predicts that prior to the 1980’s the rate was increasing from about

1.8 percent in 1960 to 3 percent in 1980. By comparing bands across model estimates, we

observe that the estimates of the local level model are relatively more precise than those

of the HLW model. In this respect, Figure 17 in the Appendix confirms that the higher

efficiency of the local level model is mostly attributable to lower filter uncertainty, and

marginally to lower parameter uncertainty.
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3.2 Historical International Evidence on r∗

We collect historical data at annual frequency over the period 1891-2016 for a set of

seventeen advanced economies. Such a sample is likely to produce flat IS and Phillips

curves for two reasons: (i) the low frequency of the annual data may be too coarse to

identify any relation among output gap, interest rate gap, and inflation; and (ii) the long

time span may imply structural breaks in the relationships among those variables. For

those reasons, we use the international data to test the external validity of the local level

model.

Data on nominal short-term interest rates and CPI inflation rates come from the Jordà-

Schularick-Taylor (2017a) Macrohistory Database, which spans more than one century of

data (1891-2013). We extend the sample until 2016 using data from the OECD Main

Economic Indicators.10 In order to compute the ex-ante real interest rate, we construct

inflation expectations by estimating a sequence of first-order autoregressive models on

realized inflation with rolling twenty-years windows, similarly to Hamilton et al. (2016).

Cross-country distributions of nominal interest rates, inflation, and inflation expectations,

are plotted in Figure 18 in the Appendix.

Figure 8 plots the cross-country distribution of real interest rates over the period 1891-

2016. Real interest rates largely fluctuate over the sample, especially during the first and

second World Wars, during which they become highly negative, as already emphasized

by Hamilton et al. (2016) and Jordà et al. (2017b). When focussing on the post-WW2

period, we observe a marked rise and fall of real interest rates, which starts around the

1960’s, peaks about the end of the 1980’s, and gradually falls until converging to very low

or even negative levels in 2000’s. Jordà et al. (2017b) also document the rise and fall of

the real safe rate, pointing out that, from a long-run perspective, the relevant question is

why the safe rate was so high in the mid-1980’s, rather than why it has declined so much
10Specifically, we consider data for: Australia, Belgium, Canada, Denmark, Finland, France, Germany,

Italy, Japan, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom and United
States. Data feature missing values and outliers. We identify as outliers those observations for which
the nominal short-term interest rate or the CPI inflation are in absolute value greater than 20%, and
we treat those outliers as missing observations. We construct a balanced panel of data by filling missing
values with values predicted by an estimated common factor model on observed real rates, which deals
with missing observations through the approach described in Mariano and Murasawa (2003).

23



Figure 8: Real interest rates across countries

(a) Ex-post real rate (b) Ex-ante real rate
Notes: annual data, 1891-2016. Cross-country median in red, 68% and 90% bands in dark and light blue, respectively.

Data come from the Jordà-Schularick-Taylor (2017a) Macrohistory Database and OECD Main Economic Indicators.

since then.

We investigate further the rise and fall of the real interest rate by estimating the

natural interest rate of each economy under study. Specifically, we fit a local level model

for annual data on the ex-ante real interest rate for each country i as follows

ri,t = r∗i,t + r̃i,t, (15)

r∗i,t = r∗i,t−1 + εr
∗

i,t, (16)

where the innovation to the natural interest rate, εr∗
i,t, is serially uncorrelated with variance

σ2
r∗

i
. To reduce the influence of extreme observations, especially during the first and second

World Wars, we allow the variance of the interest rate gap to vary over time according to

an ARCH(1) process, as in Hamilton et al. (2016). Specifically,

r̃i,t = h
1/2
i,t ei,t ei,t ∼ N(0, 1)

hi,t = δi,0 + δi,1r̃
2
i,t−1

Even though the presence of ARCH effects makes the system conditionally non-Gaussian,

we are still able to carry out the estimation via the Kalman filter using the approximation

in Harvey et al. (1992). We initialize the filter by setting r∗i,1|1 = ri,1, with a diffuse prior
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Figure 9: Estimated natural rates across countries: 1891-2016

Notes: annual data, 1891-2016. Estimated r∗ across countries. Black solid line refers to the unweighed average.

for the variance of the initial observation. To help convergence, we impose nonnegativity

constraints on σ2
r∗,i and δi,0, and we restrict δi,0 to be between 0 and 1. Finally, we compute

confidence bands of the one-sided filtered natural rate by applying Hamilton’s (1986)

approach, which deals with both filter and parameter uncertainty, with 2000 replications

of the parameter vector. Figure 20 in the Appendix plots the estimated country-specific

volatilities of the interest rate gap, confirming that ARCH effects adequately capture the

large fluctuations associated with the two World Wars.

Figure 9 plots the estimated r∗ for all countries in the sample, together with their

unweighed average (black solid line). We observe a strong comovement in the estimated

natural interest rates. Most of the rates closely follow the average, especially so after the

1960’s, thereby suggesting a strong international synchronization of interest rates. We

document a general decline in natural interest rates which starts from the beginning of

the twentieth century until roughly the 1960’s. Thereafter, natural interest rates follow
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Figure 10: Estimated natural rates: U.S. and euro area

Notes: annual data, 1960-2016. Estimated r∗ jointly with the 68% and 90% bands. Bands, which reflect both filter and

parameter uncertainty, are computed using Hamilton’s (1986) approach with 2000 replications.

a generalized rise and fall which peaks around the end of the 1980’s. Eventually, rates

converge to very low, or even negative levels over the 2000’s. While most of the literature

has already emphasized the gradual fall of the natural interest rate that occurred since

the early 1990’s, here we put the dynamics of the rate in a long-run perspective and focus

on the rise and fall which occurred over the post-WW2 period.

This rise and fall in the natural interest rate appears to be statistically significant

for most of the countries. Figure 19 in the Appendix reports the estimated natural

rates and the associated 90% bands for each country. We also construct a measure of the

natural interest rate for the euro area by aggregating individual rates of Eurozone member

countries using GDP-based weights over the period 2000-2016. Figure 10 compares the

natural interest rate of the United States with the one of the euro area by plotting both

estimates with 68% and 90% bands. As can be seen, the rise and fall pattern is significant

in both currency areas, with a peak around the mid-1980’s for the United States, and in

the early 1990’s for the euro area.

3.3 What has Driven the Rise and Fall in r∗?

The next question that we pose is: what has driven the rise and fall of the natural

interest rate? The local level model does not speak about the drivers of r∗ because it
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Figure 11: The rise and fall of the natural interest rate

Notes: the chart reports in the x-axis, the change in the natural interest rate between 1960 and 1990, in the y-axis, the

change in the natural interest rate between 1990 and 2016.

exploits data on the interest rate only. Still, we can exploit the cross-country variation

on the estimated natural rates to draw important insights about some characteristics of

the underlying drivers of the rise and fall that we have documented.

Figure 11 plots the change in the estimated natural rate between 1960 and 1990 against

the corresponding change between 1990 and 2016. We highlight two results. First, there

is a large synchronization of natural rates, as most of them increase over the 1960-1990

period (with the interesting exception of Japan), and generally fall afterwards. This

evidence suggests the presence of common, or global, factors, which may have played an

important role in driving the variation of natural rates across countries. And second,

countries which feature larger falls in the natural rate since the 1990’s are also those for

which the rate increased faster since the 1960’s. The relationship appears to be strong,

with an average correlation of -68%. This evidence confirms that both the rise and fall
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in the natural interest rate may be the result of the same factor. Hence, any hypothesis

that seeks to explain the fall in interest rates should also be consistent with explaining

the precedent rise.

To shed further light on the factors behind the rise and fall, we estimate the following

Panel Error Correction Model (ECM)

∆ri,t = α (ri,t−1 − β′Xi,t−1) + γ′∆Xi,t + εi,t, (17)

where each country is denoted by i, ri,t is the observed real interest rate, and Xi,t is

a vector of indicators of potential drivers of the natural interest rate. The rationale

behind equation (17) is the following: if there exists a long-run cointegration relationship

between a number of unobserved factors and the natural interest rate, then there must

exist cointegration between the measures of those factors and the observed real interest

rate. Moreover, the regression model (17) yields an alternative measure for the natural

interest rate, which is given by the estimated linear combination of the observed factors,

β̂′Xi,t. This measure can then be decomposed further in terms of the contributions of

each factor. We provide further details in the Appendix.

We collect cross-country data on potential drivers of the natural interest rate over the

period 1960-2016 by relying on the existing theoretical literature. We identify three factors

which can be plausibly considered exogenous determinants: (i) productivity growth; (ii)

demographic composition; and (iii) risk. We acknowledge that we deal with a narrow

set of potential factors, but this limitation is attributable to two reasons. First, the lack

of available historical cross-country data is a serious constraint for our analysis. And

second, we refrain from considering those drivers which are likely to be endogenous to

the natural interest rate or to some other specific factors which we are already including

in the analysis. Our exercise should then be interpreted as confronting three different

hypotheses to the data, given the caveat that we are not considering the entire set of

potential explanations behind the evolution of the natural interest rate.11

11Another important caveat is that, while the literature has traditionally considered productivity,
demographics, and risk as independent, recent papers emphasize the potential connections among them.
See for instance Aksoy et al. (2015), which propose a theoretical model in which demographic changes,
by affecting the rate of innovation, may shape the evolution of productivity.
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Figure 12: Cross-country data for the Panel ECM estimation

(a) Real ex-ante rate (b) TFP growth

(c) Young-age population share (d) Term spread

Notes: annual data, 1960-2016, for 17 economies. Cross-country median (in red) and interquartile range (in blue). Data on

TFP come from Penn World Tables, Total Economy Database. Young-age population share (20-39 years old) come from

the Human Mortality Database. Term spread is defined as the long-term minus short-term rates, where data come from

the Jordà-Schularick-Taylor (2017a) Macrohistory Database and OECD Main Economic Indicators.
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Changes in productivity, by affecting the propensity to invest, may play an important

role in determining the natural interest rate. This explanation follows the traditional

logic of the basic New Keynesian model, according to which the only source of variation

in the natural interest rate is the growth of productivity. In this respect, Gordon (2012,

2014) suggests that the United States and various advanced economies are experiencing

a productivity slowdown due to a decline in the innovation rate. Following this logic, the

productivity slowdown may be responsible for the current low levels of the natural interest

rate. HLW2017 provide evidence to support this hypothesis by showing that the synchro-

nized fall in the natural interest rate in the United States and other advanced economies

may be attributable to a generalized slowdown of trend growth. We collect cross-country

data on TFP growth from the Penn World Tables, extended forward to the year 2016 with

data from the Total Economy Database. Figure 12 plots the cross-country distribution of

TFP growth. As can be seen, productivity growth is very volatile and steadily declines

over time, reflecting the aforementioned productivity slowdown phenomenon.

Changes in the demographic composition may also have an important effect on the

natural interest rate, for instance by affecting the aggregate propensity to save of the

economy. Most of the literature has emphasized the gradual process of population age-

ing as having a plausible downward effect on the natural rate. Ageing induces people

to accumulate savings during their working lives so as to be able to pay for their retire-

ment. In this paper, we also emphasize that the United States and many other advanced

economies experienced a dramatic baby boom after the Second World War, which tem-

porarily raised the share of young workers in the population. To the extent that the young

workers supply labor and have relatively low savings rate, as documented for instance in

Higgins (1998), the baby boom might have led to a temporary rise of the natural interest

rate. For that reason, we obtain cross-country data on demographic composition from

the Human Mortality Database, a joint project developed by the University of California

and the Max Planck Institute for Demographic Research. We construct a measure of

young-age population share, calculated as the ratio of the population aged between 20

and 39 over total population. Figure 12 plots the cross-country distribution of this share.

The series is markedly smooth and features large comovements. We observe the effects
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of the baby boom in many advanced economies: a temporary increase since the 1960’s,

with a peak around the end of the 1980’s. Once the baby boom ends, the share gets back

to its negatively sloped trend, presumably driven by the process of population ageing.

The final determinant that we consider is based on the idea that higher risk may

drive down the natural rate by increasing the propensity of the households to save. In

this respect, Gerali and Neri (2018) estimate a DSGE model for the United States and

the euro area which shows that risk premium shocks, capturing precautionary savings

motives due to heightened uncertainty, have driven down the natural interest rate in both

currency areas. Related to this logic, Del Negro et al. (2017) emphasize the role of

spreads between Treasury and corporate bonds, finding that safety and liquidity premia

have reduced the U.S. natural interest rate since the 1990’s. Further, Caballero and Farhi

(2017) also show how episodes of scarcity of safe assets can reduce the natural interest

rate. We collect data on the spread between long-term and short-term interest rates as

an imperfect proxy for the term premium to measure the time-varying risk aversion of

the agents. Once again, data until 2013 come from the Jordà-Schularick-Taylor (2017a)

Macrohistory Database, but we extend the sample until 2016 using data from the OECD

Main Economic Indicators database. Figure 12 plots the cross-country distribution of the

term spread. As can be seen, the spread is very volatile, it starts to increase in the 1990’s

and peaks during the Great Recession.

We estimate the Panel ECM of (17) in which the dependent variable is the real ex-ante

interest rate. We add either a common intercept or a country-specific constant to allow

for some heterogeneity across countries. Table 1 reports the results of those regressions.

In both specifications, the loading coefficient is not only statistically significant but also

lies between -1 and 0, which is evidence of cointegration among the variables. We find

a weak link of TFP growth with the real interest rate: the associated coefficient is not

statistically significant in either version of the regression. This finding complements recent

results in Lunsford and West (2017), who find a negative rather than positive long-run

correlation between the safe rate and TFP growth for the United States. This result is

also in line with Hamilton et al. (2016), who find a tenuous relationship between average

real rates and trend GDP growth using historical data for a large set of OECD economies.
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Table 1: Panel ECM estimation results

Loading -0.22*** -0.25***
(0.02) (0.02)

TFP growth 0.18 0.14
(0.14) (0.12)

Risk -0.73*** -0.77***
(0.15) (0.14)

Young share 0.41*** 0.49***
(0.09) (0.09)

Intercept Common Country-specific

Note: The dependent variable is the real ex-ante interest rate, measured in percentages at annual rate. TFP growth is

measured in percentages. Risk is the spread between long- and short-term interest rates, both measured in percentages

at annual rate. Young share is the share of people aged 20-39 years old over total population, measured in percentages.

Balanced panel for 17 countries at annual frequency (1960-2016). Standard errors in parentheses. *, **, *** respectively

denote significance at the 10%, 5%, and 1%.

On the other hand, risk is negatively related to the real interest rate, and the relationship

is statistically significant in either version of the regression. This result is in line with

the mechanism emphasized in Gerali and Neri (2018), according to which heightened risk

increases the precautionary savings motive of the agents, thereby decreasing the natural

interest rate.

Finally, we observe that the young-age population share is positively related to the real

interest rate. This result is consistent with the recent literature emphasizing population

ageing as responsible for the current low levels of real interest rates. Again, this result is

also in line with Lunsford and West (2017), who find a negative long-run correlation of

the U.S. real interest rate with the share of 40- to 64-year-old in the population.
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Figure 13: Estimated r∗ by Panel ECM and local level model: selected economies

Notes: annual data, 1960-2016, for 17 economies. Local level model estimates in dashed blue jointly with 68% confidence

bands, Panel ECM estimates in dotted red jointly with 68% confidence bands. Results from HLW (2017) in dashed black for

the United States, Canada, and United Kingdom over the period 1961-2016, for the euro area over the period 1972-2016.

Figure 13 plots the estimated natural interest rates by the Panel ECM and the local

level model and the corresponding 68% confidence bands for the US, euro area, Canada,

and UK. We also report results of HLW (2017) for the same economies, whose results at

quarterly frequency over the period 1961Q1-2016Q4 (1972Q1-2016Q4 for the euro area)

have been averaged at the yearly frequency. The Panel ECM results predict a statistically

significant rise and fall of the natural interest rate over the sample, which closely follow

findings of the local level model. The same result holds for many other countries in the

sample, as reported in Figure 21 in the Appendix. Thus, our results largely confirm
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the findings in HLW (2017) about the fall of the natural interest rate since the 1990’s.

Nevertheless, we emphasize a discrepancy in the behavior of r∗ prior that date: while HLW

(2017) predicts a steady decline of the natural rate over the entire sample, largely due to

a slowdown in trend growth, our two alternative but complementary approaches predict

a rise of the natural interest rate until approximately the end of the 1980’s. Therefore,

one relevant question we may ask is why the natural interest rate was so high over the

1980’s-1990’s, as well as why it has declined so much since then.

Figure 14: What explains the rise and fall?

Notes: annual data, 1960-2016. Solid black line refers to the estimated (demeaned) natural interest rate estimated by the

Panel ECM. Bars correspond to the individual contributions of productivity growth, risk, and demographic composition.

We tackle the question on what has driven the rise and fall of r∗ by computing the

contributions of each factor to the real interest rate predicted by the Panel ECM model.
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Figure 14 plots the estimated natural interest rates for the US, euro area, Canada, and

UK, demeaned so to abstract from the contribution of the intercept, together with each

driver’s contribution. In general, we observe a minor role for productivity growth in

most countries. Risk explains part of the rise of the real interest rate, and a substantial

component of the fall since roughly the 1990’s. Demographic composition plays a key

role in affecting the natural interest rate, particularly so for the U.S. and Canada. Since

the 1960’s, the young-age population rises due to the dramatic baby boom experienced in

those economies, which coincides with a steady increase in the real rate. Once the baby

boom ends, the share of young in the population falls, and simultaneously real interest

rates gradually fall too.

To isolate the role of demographics, Figure 15 compares the estimated natural interest

rate with the version that abstracts from productivity growth and risk, for a select group

of countries. As can be seen, changes in demographic composition account for most of

the rise and fall of the natural interest rate in US, the euro area, and Canada. Interest-

ingly, demographics account for the dynamics of r∗ in Japan too, which experienced the

demographic transition much earlier than the rest of advanced economies, consistently

predicting the absence of the rise and fall of the natural interest rate for this economy.
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Figure 15: The role of demographics

Notes: annual data, 1960-2016. Panel ECM estimated natural interest rate in dotted red jointly with 68% confidence bands;

estimated natural interest rate which abstracts from productivity growth and risk in dashed blue.

To provide an overall assessment of factors shaping the rise and fall across countries,

Figure 16 reports for each country the changes in the estimated natural interest rate over

the periods 1960-1990 and 1990-2016, as well as the contributing factors. The evolving

demographic composition appears to have played a key role in shaping developments of

r∗, especially so for the post-1990’s fall. Risk factors have also played a non-negligible

role, particularly in the United Kingdom and Portugal. Finally, our results confirm a

minor role for productivity growth in explaining the rise and fall of r∗.

36



Figure 16: Changes in r∗ and contributions: the rise (1960-1990) and fall (1990-2016)

(a) Change 1960-1990 (b) Change 1990-2016

Notes: Red dots denote changes in estimated r∗ over the period 1960-1990 (panel a) and over the period 1990-2016 (panel

b), in percent. Bars correspond to the individual contributions of productivity growth, risk, and demographic composition.

4 Conclusions

In this paper we shed some light on the fundamental source of uncertainty that plagues

the workhorse model of LW2003, which tries to measure the natural interest rate. We

show that the model is generally able to produce very accurate estimates of r∗. However,

the precision of the model dramatically drops when either the output gap is insensitive to

the real interest rate gap (flat IS curve), or if inflation is insensitive to the output gap (flat

Phillips curve). In those cases, the model fails the observability condition, which ensures

that the unobserved states can be uniquely determined by the data. Unfortunately, those

cases are empirically relevant according to the estimates in the literature.

Nevertheless, we show that after imposing stationarity of the interest rate gap, the

LW2003 model can identify both the growth and non-growth components of r∗ even when

the IS and Phillips curves are flat. The extra identification restriction comes from the fact

that the observed real rate can be decomposed into a transitory component (interest rate

gap) and a permanent component (the natural rate). A direct implication of this finding

is that, if a researcher is interested in estimating r∗ but not necessarily its components,

then a valid alternative is to estimate a univariate local level model which decomposes the

observed real interest rate into its permanent and transitory components. The permanent
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component closes the interest rate gap, and consistently stabilizes both the output gap

and inflation under a general class of New Keynesian models.

Obviously, the local level model cannot identify the growth and non-growth compo-

nents of r∗, because it exploits data on the interest rate only. However, it is robust to

situations in which either the estimated IS or the Phillips curves are flat, because the

model is always observable.

We employ historical data at the annual frequency for a set of seventeen advanced

economies over the period 1891-2016 to test the validity of the local level model. We find

a common decline of r∗ across most countries since the start of the twentieth century

until the 1960’s. Subsequently, a marked rise and fall occurs, peaking around the end of

the 1980’s. Interestingly, countries which feature larger falls in the natural rate since the

1990’s are also those for which the rate increased more over the period 1960’s – 1980’s.

This evidence suggests that both the rise and fall of r∗ may be the result of common

drivers, and that any hypothesis that seeks to explain the fall in interest rates should be

able to explain the precedent rise too.

Since the local level model is silent about the drivers of the estimated r∗, we investigate

the rise and fall of r∗ by estimating a Panel ECM using data on the observed real interest

rate and a set of indicators for productivity growth, demographic composition and risk.

Through the lens of the model, we find that demographics can account for the bulk of the

rise and fall in the natural interest rate. Specifically, the observed rise can be explained

by a temporary rise in the proportion of young workers due to the dramatic baby boom

experienced in most economies. Once the baby boom ends, the share of young workers

gets back to its previous negatively trended path, due to the process of population ageing.

This evidence supports recent studies which emphasize the crucial role of demographics for

the evolution of safe real rates. An important caveat, though, is that data availability and

endogeneity concerns limit our analysis to a narrow set of potential underlying factors.

Therefore, our results should be interpreted as providing suggestive evidence that the

evolving demographics may be the key to understand the generalized rise and fall in r∗.

We leave for further research the possibility of a horse-race against a more comprehensive

set of hypotheses.
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A Estimating the Holston, Laubach, &Williams Model

The estimation of the HLW model proceeds in three steps.

Step 1: First, by omitting the interest rate gap from equation (1) and by assuming

that the trend growth rate is constant, we estimate a simpler model to recover a measure

of potential output. Specifically, the state-space representation of the model reads

(
yt
πt

)
=

[
1 −αy,1 −αy,2
0 −κ 0

] y∗t
y∗t−1
y∗t−2

+
[
αy,1 αy,2 0 0
κ 0 απ 1− απ

]
yt−1
yt−2
πt−1
πt−2|4

+
(
εỹt
επt

)
,

 y∗t
y∗t−1
y∗t−2

 =

 1 0 0
1 0 0
0 1 0


 y∗t−1
y∗t−2
y∗t−3

+

 ḡ
0
0

+

 εy
∗

t

0
0

 ,
with variances of the disturbances in the measurement and transition equations given by

H =
[
σ2
ỹ 0

0 σ2
π

]
, Q =

 σ2
y∗ 0 0
0 0 0
0 0 0

 .
We initialize the filter by using values of potential output estimated by the Congressional

Budget Office. To help convergence in estimation, we impose the following parameter

constraints: (i) we bound the standard errors of innovations to lie in between 0 and 1; (ii)

the autoregressive coefficients of the output gap are restricted to allow for stationarity:

αy,1 +αy,2 < 1 and |αy,2| < 1; (iii) the autoregressive coefficient of inflation is restricted to

απ < 1; and (iv) the κ parameter is restricted to be positive and satisfying the constraint

κ ∈ (0, 0.2) (HLW2017 estimates this parameter as 0.079).

Equations (4) and (5) form a local level model for the first difference of potential

output,

∆y∗t = gt−1 + εy
∗

t

gt = gt−1 + εgt

Thus, given an estimate for potential output, we can apply the Stock and Watson’s (1998)

median unbiased estimator of λg = σg

σy∗
, which is obtained by computing the exponential

Wald statistic of Andrews and Ploberger (1994) as in HLW2017.
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Step 2: The second step consists of imposing the estimated value of λg from the first

step, followed by the inclusion of the real interest rate gap in the output gap equation

under the assumption that zt is constant and equal to z̄. The state-space representation

of the model reads

(
yt
πt

)
=

[
1 −αy,1 −αy,2 0 4γ
0 −κ 0 0 0

]


y∗t
y∗t−1
y∗t−2
gt
gt−1

+

+
[
αy,1 αy,2 0 0 −γ
κ 0 απ 1− απ 0

]


yt−1
yt−2
πt−1
πt−2|4
rt−1

+
[
γz̄
0

]
+
(
εỹt
επt

)
,


y∗t
y∗t−1
y∗t−2
gt
gt−1

 =


1 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0




y∗t−1
y∗t−2
y∗t−3
gt−1
gt−2

+


εy

∗

t

0
0
εgt
0

 ,

with variances of the disturbances in the measurement and transition equations given by

H =
[
σ2
ỹ 0

0 σ2
π

]
, Q =


σ2
y∗ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 λ2

gσ
2
y∗ 0

0 0 0 0 0

 .

The ex-ante real interest rate enters in the model as exogenous variable. Following

HLW2017, we construct it as the nominal interest rate net of a four-quarter moving

average of past inflation. To initialize the filter we use values of CBO potential output for

y∗, and values of first differences of CBO potential output for g. The variance-covariance

matrix of the state vector is initialized as

P(II)
0|0 =

[
P̂(I)
T |T 0
0 I

]
,

where P̂(I)
T is the long-run variance-covariance matrix estimated in the first step. We

employ the values estimated in the previous step as initial condition for those values
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which have to be re-estimated. To help convergence in estimation, we impose the same

parameter restrictions as in the first stage, as well as an additional restriction on γ, which

imposes the parameter to be positive and satisfying the constraint γ ∈ (0, 0.2). In this

respect, recall that HLW2017 estimate this parameter to be equal to 0.071.

Equations (1), (3), and (6) form a local level model given by

ỹt − αy,1ỹt−1 − αy,2ỹt−2 + γrt−1 − 4γgt−1 = γzt−1 + εỹt

zt = zt−1 + εzt

The Stock and Watson’s (1998) median unbiased estimator of λz = γσz

σỹ
is obtained by

testing for a structural break with unknown break date by means of the exponential Wald

statistics of Andrews and Ploberger (1994).

Step 3: The third and final step consists of imposing the estimated value of λg from

the first step and λz from the second step, and estimating the full model by Maximum

Likelihood. The measurement equation reads

(
yt
πt

)
=

[
1 −αy,1 −αy,2 0 4γ 0 γ
0 −κ 0 0 0 0 0

]


y∗t
y∗t−1
y∗t−2
gt
gt−1
zt
zt−1


+

+
[
αy,1 αy,2 0 0 −γ
κ 0 απ 1− απ 0

]


yt−1
yt−2
πt−1
πt−2|4
rt−1

+
(
εỹt
επt

)
,

while the transition equation reads

y∗t
y∗t−1
y∗t−2
gt
gt−1
zt
zt−1


=



1 0 0 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 1 0





y∗t−1
y∗t−2
y∗t−3
gt−1
gt−2
zt−1
zt−2


+



εy
∗

t

0
0
εgt
0
εzt
0


.
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The variances of the disturbances in the measurement and transition equations are given

by

H =
[
σ2
ỹ 0

0 σ2
π

]
, Q =



σ2
y∗ 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 λ2

gσ
2
y∗ 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0

(
λzσỹ

γ

)2
0

0 0 0 0 0 0 0


.

To initialize the filter we use values of CBO potential output for y∗, values of first differ-

ences of CBO potential output for g and, following HLW2017, we set to zero the initial

values of the z component. The variance-covariance matrix of the state vector is initialized

as

P(III)
0|0 =

[
P̂(II)
T |T 0
0 I

]
,

where P̂(II)
T is the long-run variance-covariance matrix estimated in the second step. We

employ the values estimated in the previous step as initial condition for those values

which have to be re-estimated. To help convergence in estimation, we impose the same

constraints on parameters as in the second step.

B Computing Confidence Bands for the State Vector

The approach closely follows Hamilton (1986). Consider the estimation of an unobserved

state vector xt when the true value of the parameter vector θ is unknown, given data

available up to time T , zT . Here we take a Bayesian perspective and consider that the

parameter vector is a random variable s.t. θ ∼ N (θ0,Σ0). We seek to evaluate the

variance of the unobserved state vector

E
{

[xt − x̂t(zT )] [xt − x̂t(zT )]′ |zT
}

which can be decomposed as

E
{

[xt − x̂t(zT )] [xt − x̂t(zT )]′ |zT
}

= Eθ|zT

{
[xt − x̂t(zT , θ)] [xt − x̂t(zT , θ)]′ |zT

}
+

+ Eθ|zT

{
[x̂t(zT , θ)− x̂t(zT )] [x̂t(zT , θ)− x̂t(zT )]′ |zT

}
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The first term in the right-hand side represents filter uncertainty, while the second term

represents parameter uncertainty. To compute the filter uncertainty, generate θi draws,

with i = 1, . . . , B, of the parameter vector from a N
(
θ̂(zT ), Σ̂(zT )

)
, where θ̂(zT ) is the

MLE of θ and Σ̂(zT ) is its associated asymptotic variance-covariance matrix. For each

θi calculate the sequences {x̂t(zT , θi)} and
{
P̂t(zT , θi)

}
by running through the Kalman

filter. For each t, average the P̂t(zT , θi) across draws

1
B

B∑
i=1

P̂t(zT , θi), (18)

which yields a Monte Carlo estimate of the contribution of the filter uncertainty. Then,

for each t calculate the variance of x̂t(zT , θi) across draws

1
B

B∑
i=1

[x̂t(zT , θi)− x̂t(zt)] [x̂t(zT , θi)− x̂t(zt)]′ (19)

which yields an estimate of the parameter uncertainty. The estimated total variance is

given by summing up the two expressions in (18) and (19). Hence, standard errors can

be directly computed given the estimated variance-covariance matrices.

C Observability: Definition and Examples

Consider the general state space form in Harvey (1989) which applies to a n-variate time

series observed at date t, yt, which contains n elements,

yt = Zxt + Dwt + ut ut ∼ N (0,R) (20)

xt = Txt−1 + vt vt ∼ N (0,Q) (21)

where xt is a s×1 vector of unobserved states, wt is a p×1 vector of (observed) exogenous

or predetermined variables; Z, D, and T are matrices of parameters of dimension n× s,

n × p, and s × s, respectively; ut is an n × 1 vector of zero-mean serially uncorrelated

disturbances with covariance matrix R; and finally vt is an s × 1 vector of zero-mean

serially uncorrelated disturbances with covariance matrix Q.

Suppose that the particular values of all system matrices are known with certainty. In

this context, we ask the question: can we learn about the dynamic behavior of the vector
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of unobserved states by using information about all the observables and disturbances?

The key condition which allows the state vector xt to be determined exactly is that the

system defined by equations (20)-(21) should be observable, a concept introduced in the

seminal work of Kalman (1960). Following Harvey (1989, chap. 3), the linear system

(20)-(21) is said to be observable if the following condition holds

Rank



Z
ZT
ZT2

...
ZTs−1

 = s (22)

The key idea behind the observability condition is that the problem of determining the

path of the state vector can be simplified to the problem of finding the initial condition

x0: once we know it, we can recover the full path of the state variables given recursions

of the transition equation in (21) and perfect knowledge of the disturbances vt. Suppose

for simplicity that yt is univariate: since the s-dimensional vector x0 contains s unknown

components, it is expected that s observations are sufficient to determine x0. Take t =

0, 1, . . . , s− 1 and generate the following sequence,

y0 = Zx0 + Dw0 + u0

y1 = Zx1 + Dw1 + u1 = ZTx0 + Zv1 + Dw1 + u1

y2 = Zx2 + Dw2 + u2 = ZT2x0 + ZTv1 + Zv2 + Dw2 + u2

...

ys−1 = Zxs−1 + Dws−1 + us−1 = ZTs−1x0 +
s−1∑
j=1

ZTs−1−jvj + Dws−1 + us−1

which can also be written as

Z
ZT
ZT2

...
ZTs−1

x0 =



y0
y1
y2
...

ys−1

+ Γ



v0
v1
v2
...

vs−1

+ ∆



w0
w1
w2
...

ws−1

+



u0
u1
u2
...

us−1

 (23)

where Γ and ∆ are s× s2 and s× ps matrices, respectively, which depend on Z, T, and

D. Given perfect knowledge of the realizations of the observables and disturbances which
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enter in the right-hand-side of (23), the system contains s linear equations in s unknowns.

Hence the solution to this system is unique if and only if the matrix which premultiplies

x0, defined as the observability matrix, has rank equal to the number of unknowns, s.

Define such a matrix by O, then the system (23) can be compactly written as

Ox0 = Ψ

If Rank(O) = s, which is the case when the rank condition in equation (22) is satisfied,

then the matrix O′O is invertible, so that the unique solution to the system is given by

x0 = (O′O)−1 O′Ψ.

Thus we can recover the unique path for the state vector, xt, given the transition equation

in (21) and perfect knowledge of the disturbances vt. Conversely, if Rank(O) < s, then

the matrix O′O is not invertible, and there are infinite solutions for x0 which satisfy the

system. Hence we cannot recover a unique path for the state vector, and the model is

said to be unobservable.

Notice that the O matrix is constructed using powers of T only up to Ts−1. This

comes from the Cayley-Hamilton theorem, according to which Ts+j for j ≥ 0 will be a

linear combination of T0 through Ts−1, meaning that adding further powers of T cannot

increase the rank of the observability matrix. Also notice that the matrix D , associated

to the coefficients of the exogenous variables, does not affect the observability matrix, and

hence does not alter the observability properties of the system.

To fix ideas, in the following we consider the observability properties of some simple

state space models.

C.1 Local Level Model

Consider a local level model as in Watson (1986), according to which a univariate ob-

served process, yt, is modeled as the sum of a permanent component, y∗t , and a transitory
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component ỹt,

yt = y∗t + ỹt

y∗t = y∗t−1 + εy
∗

t εy
∗

t ∼ N(0, σ2
y∗)

ỹt = αỹt−1 + εỹt εỹt ∼ N(0, σ2
ỹ)

where we allow for a serially correlated transitory component with correlation coefficient

that satisfies |α| < 1. We can think of yt as of the output level, with y∗t being its potential

level, and ỹt the output gap. Following the general state space form in (20)-(21), we can

cast the model as

yt =
[

1 1
]

︸ ︷︷ ︸
Z

[
y∗t
ỹt

]
[
y∗t
ỹt

]
=

[
1 0
0 α

]
︸ ︷︷ ︸

T

[
y∗t−1
ỹt−1

]
+
[
εy

∗

t

εỹt

]

Given that there are two unobserved states, the observability matrix of this system is

given by

O =
[

Z
ZT

]
=
[

1 1
1 α

]
The model is observable if the observability matrix has full rank, which always happens

given that |α| < 1. In the particular case that α = 1, the observability matrix is rank

deficient and the model is not observable, since the observed process yt is the sum of two

nonstationary processes which cannot be separately identified.

Notice that we could have alternatively written the model according to the following

state space representation,

yt = (1− α)y∗t−1 + αyt−1 + εỹt + εy
∗

t

y∗t = y∗t−1 + εy
∗

t

where the state vector just includes y∗t−1. In this case the observability matrix boils down

to a scalar which equals 1 − α. As before, the model is observable as long as |α| < 1.

Hence the specific choice of the state space representation does not affect the observability

properties of the original model.

52



C.2 Local Linear Trend Model

Now consider a local linear trend model,

yt = y∗t + ỹt

y∗t = y∗t−1 + gt−1 + εy
∗

t εy
∗

t ∼ N(0, σ2
y∗)

gt = gt−1 + εgt εgt ∼ N(0, σ2
g)

ỹt = αỹt−1 + εỹt εỹt ∼ N(0, σ2
ỹ)

where we restrict the transitory component to be stationary by imposing |α| < 1. This

model implies that the process for yt is integrated of order two, since potential output

depends on trend growth, gt, which follows a random walk. Following the state-space

form in (20)-(21), we can write the model as

yt =
[

1 0 1
]

︸ ︷︷ ︸
Z

 y∗t
gt
ỹt


 y∗t
gt
ỹt

 =

 1 1 0
0 1 0
0 0 α


︸ ︷︷ ︸

T

 y∗t−1
gt−1
ỹt−1

+

 εy
∗

t

εgt
εỹt



Given that the model features three unobserved states, the observability matrix of this

system is given by

O =

 Z
ZT
ZT2

 =

 1 0 1
1 1 α
1 2 α2


The model meets the observability condition if Rank(O) = 3, which always occurs since

|α| < 1. Again, in the special case that α = 1, it is easy to see that the first and third

columns of the O matrix, which are associated to the y∗t and ỹt processes, are equal.

Therefore the observability matrix is rank deficient and the model is not observable be-

cause it is not possible to separately identify the potential output from the output gap.
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C.3 Local Linear Trend Model with a Supply Equation

Consider the local linear trend model for output, augmented by a supply equation which

relates inflation, πt, to past realizations of the output gap,

yt = y∗t + ỹt

y∗t = y∗t−1 + gt−1 + εy
∗

t εy
∗

t ∼ N(0, σ2
y∗)

gt = gt−1 + εgt εgt ∼ N(0, σ2
g)

ỹt = αỹt−1 + εỹt εỹt ∼ N(0, σ2
ỹ)

πt = κỹt−1 + επt επt ∼ N(0, σ2
π)

where again we assume that |α| < 1. This model is similar to the HLW model, with the

only difference that in the latter the output gap also depends on the interest rate gap.12

Using the state-space representation in (20)-(21), we can write the model as

[
yt
πt

]
=

[
1 0 α
0 0 −κ

]
︸ ︷︷ ︸

Z

 y∗t
gt
ỹt−1

+
[
εỹt
επt

]

 y∗t
gt
ỹt−1

 =

 1 1 0
0 1 0
0 0 α


︸ ︷︷ ︸

T

 y∗t−1
gt−1
ỹt−2

+

 εy
∗

t

εgt
εỹt−1



Given that the model features three unobserved states, the observability matrix of this

system is given by

O =

 Z
ZT
ZT2

 =



1 0 α
0 0 −κ
1 1 α2

0 0 −ακ
1 2 α3

0 0 −α2κ


Let us consider two cases. First, suppose that κ = 0, so that the model boils down to

the standard local linear trend model. In this case the observability matrix has full rank

since |α| < 1, as previously shown. Second, suppose the special case α = 1, so that the

output gap, ỹt, is nonstationary. We can still uniquely determine the state vector as long
12It is also similar in spirit to Kuttner (1994), which employs a local level model for output augmented

by a supply equation.
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as κ 6= 0. Intuitively, inflation provides valuable information for the output gap because

past realizations of this variable have an effect on current inflation.

Recall that results do not change if we cast the model in a different state space rep-

resentation. In particular, given the identity that defines the output gap, once we know

potential output we also know the output gap. We can then simplify the representation

as [
yt
πt

]
=

[
1− α 1
κ 0

]
︸ ︷︷ ︸

Z

[
y∗t−1
gt

]
+
[
α
−κ

]
︸ ︷︷ ︸

D

yt−1 +
[
εỹt + εy

∗

t

επt

]

[
y∗t
gt

]
=

[
1 1
0 1

]
︸ ︷︷ ︸

T

[
y∗t−1
gt−1

]
+
[
εy

∗

t

εgt

]

This representation features two unobserved states instead of three, so that the observ-

ability matrix is given by

O =
[

Z
ZT

]
=


1− α 1
κ 0

1− α 2− α
κ κ


As with the previous representation, in the case that κ = 0, the system boils down to

the local linear trend model and the observability matrix has full rank since |α| < 1.

Alternatively, if α = 1, we can still allow for the model to be observed as long as κ 6= 0,

as previously discussed.

It is important to stress that by adding predetermined or exogenous explanatory vari-

ables in the model, results on observability do not change. For instance, let us augment

the supply equation by adding predetermined variables and consider the Phillips curve

employed in HLW2017,

πt = αππt−1 + (1− απ)πt−2,4 + κỹt−1 + επt

which states that the observed inflation rate depends on its own lag, on the average of its
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second to fourth lags, and on the lagged output gap. The model can be cast as[
yt
πt

]
=

[
1− α 1
κ 0

]
︸ ︷︷ ︸

Z

[
y∗t−1
gt

]
+
[
α 0 0
−κ απ 1− απ

]
︸ ︷︷ ︸

D

 yt−1
πt−1
πt−2|4

+
[
εỹt + εy

∗

t

επt

]

[
y∗t
gt

]
=

[
1 1
0 1

]
︸ ︷︷ ︸

T

[
y∗t−1
gt−1

]
+
[
εy

∗

t

εgt

]

We can see that the observability matrix does not change, and it is still given by

O =
[

Z
ZT

]
=


1− α 1
κ 0

1− α 2− α
κ κ


Hence the addition of predetermined or exogenous observed variables does not change the

observability properties of the model.

D Additional Results on Observability

D.1 Full HLW Model

Here we study the observability of the HLW model in which two lags of the output gap

enter in the IS curve as in the original specification of HLW2017. The measurement

equation can be written as

[
yt
πt

]
=

[
1− αy,1 −αy,2 1 + 4γ γ
−κ 0 0 0

]
︸ ︷︷ ︸

Z


y∗t−1
y∗t−2
gt−1
zt−1

+

+
[
αy,1 αy,2 0 0 −γ
κ 0 απ 1− απ 0

]
︸ ︷︷ ︸

D


yt−1
yt−2
πt−1
πt−2|4
rt−1

+
[
εỹt + εy

∗

t

επt

]

The transition equation reads
y∗t
y∗t−1
gt
zt

 =


1 0 1 0
1 0 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

T


y∗t−1
y∗t−2
gt−1
zt−1

+


εy

∗

t

0
εgt
εzt


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Given that the representation features four states, the observability matrix reads

O =


Z

ZT
ZT2

ZT3

 =



1− αy,1 −αy,2 1 + 4γ γ
−κ 0 0 0

1− αy,1 − αy,2 0 2 + 4γ − αy,1 γ
−κ 0 −κ 0

1− αy,1 − αy,2 0 3 + 4γ − 2αy,1 − αy,2 γ
−κ 0 −2κ 0

1− αy,1 − αy,2 0 4 + 4γ − 3αy,1 − 2αy,2 γ
−κ 0 −3κ 0


Let us specialize to two cases:

Case 1. The IS curve is flat (γ = 0)

If the elasticity of current output gap to past real interest rate gap is zero, then the IS

curve is completely flat. The observability matrix reads

O =



1− αy,1 −αy,2 1 0
−κ 0 0 0

1− αy,1 − αy,2 0 2− αy,1 0
−κ 0 −κ 0

1− αy,1 − αy,2 0 3− 2αy,1 − αy,2 0
−κ 0 −2κ 0

1− αy,1 − αy,2 0 4− 3αy,1 − 2αy,2 0
−κ 0 −3κ 0


The fourth column, which is related to the zt process, is a vector of zeros. Hence

Rank(O) < 4 and the model is not observable. The output gap is completely insensitive

to the real interest rate gap, so that information about the output gap cannot help identify

the zt component which enters in the interest rate gap. As a result, we cannot uniquely

identify the path of zt and, consequently, the path of the natural interest rate.

Case 2. The Phillips curve is flat (κ = 0)

If the elasticity of current inflation to past output gap is zero, the Phillips curve is flat.
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The observability matrix reads

O =



1− αy,1 −αy,2 1 + 4γ γ
0 0 0 0

1− αy,1 − αy,2 0 2 + 4γ − αy,1 γ
0 0 0 0

1− αy,1 − αy,2 0 3 + 4γ − 2αy,1 − αy,2 γ
0 0 0 0

1− αy,1 − αy,2 0 4 + 4γ − 3αy,1 − 2αy,2 γ
0 0 0 0


The first, second, and fourth columns are linearly dependent, being the fourth column

equal to the sum of the first and second columns, multiplied by γ
1−αy,1−αy,2

. Hence

Rank(O) < 4 and the model is not observable. Inflation is insensitive to the output

gap, and the model cannot separately identify the zt component from potential output.

D.2 Stationary zt Process

Consider the HLW model in the case that zt follows a stationary AR(1) process,

zt = αzzt−1 + εzt

where |αz| < 1. The measurement equation remains unchanged,

[
yt
πt

]
=
[

1− αy 1 + 4γ γ
−κ 0 0

]
︸ ︷︷ ︸

Z

 y∗t−1
gt−1
zt−1

+
[
αy 0 0 −γ
κ απ 1− απ 0

]
︸ ︷︷ ︸

D


yt−1
πt−1
πt−2|4
rt−1

+
[
εỹt + εy

∗

t

επt

]

while the transition equation now reads y∗t
gt
zt

 =

 1 1 0
0 1 0
0 0 αz


︸ ︷︷ ︸

T

 y∗t−1
gt−1
zt−1

+

 εy
∗

t

εgt
εzt



The observability matrix reads

O =

 Z
ZT
ZT2

 =



1− αy 1 + 4γ γ
−κ 0 0

1− αy 2 + 4γ − αy αzγ
−κ −κ 0

1− αy 3 + 4γ − 2αy α2
zγ

−κ −2κ 0


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Now consider the previous two cases:

Case 1. The IS curve is flat (γ = 0)

If the elasticity of current output gap to past real interest rate gap is zero, the observability

matrix reads

O =



1− αy 1 0
−κ 0 0

1− αy 2− αy 0
−κ −κ 0

1− αy 3− 2αy 0
−κ −2κ 0


and the third column, which is associated to the zt process, boils down to a vector of

zeros. Therefore in this case Rank(O) < 3 and the model is not observable either. In

particular, we cannot recover a unique path for zt. Still, we can uniquely determine the

paths for potential output and trend growth, as long as either κ 6= 0 or |αy| < 1.

Case 2. The Phillips curve is flat (κ = 0)

If the elasticity of current inflation to past output gap is zero, the observability matrix

reads

O =



1− αy 1 + 4γ γ
0 0 0

1− αy 2 + 4γ − αy αzγ
0 0 0

1− αy 3 + 4γ − 2αy α2
zγ

0 0 0


In this case, the first and third columns are linearly dependent only if αz = 1. Hence,

if αz 6= 1, Rank(O) = 3, and the model is observable, and we can uniquely identify the

paths for all elements of the state vector.

E A Panel Error Correction Model to Estimate r∗

Recall equation (9), which can be rewritten as,

rt = r∗t + r̃t.

This equation states that the observed real interest rate can be decomposed into the

natural rate and the interest rate gap. We can think of the natural interest rate as
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depending on a linear combination of nf unobserved factors included in the Ft vector,

r∗t = β′Ft, (24)

where the Ft vector contains mutually uncorrelated random walk processes. Suppose that

we observe a vector Xt of potentially mismeasured indicators of factors included in Ft,

Xt = Ft + et

and assume that measurement errors et are serially and mutually uncorrelated processes,

with E(etr̃t) = 0. Then, we can link the observed real interest rate to the set of indicators

as

rt = β′Xt + εt, (25)

where εt = r̃t − β′et. Given that the natural interest rate cointegrates with a set of

unobserved factors by virtue of equation (24), cointegration also exists among the observed

real interest rate and the indicators of the factors, according to equation (25). Moreover,

without measurement error (et = 0), β′Ft = r∗t and the stationary disturbance εt coincides

with the interest rate gap.

Hence a regression of the observed real interest rate on a number of plausible drivers

of the natural interest rate delivers a predicted rate which should be a proxy for the linear

combination of unobserved factors, β′Ft, which in turn coincides with the natural interest

rate according to equation (24). Therefore, we can estimate equation (25) in its error

correction form to recover a proxy for the natural interest rate. In order to assess the

quality of the proxy, we can directly compare the predicted value of the regression with

the natural interest rate estimated by the local level model.

By writing (25) in its error correction form,

∆rt = − (rt−1 − β′Xt−1) + β′∆Xt + εt

any disequilibrium between the observed and predicted interest rates fully closes in one

period. Since this assumption is rather restrictive, we may allow for the disequilibrium

to get partially reabsorbed over time by extending (25) to an autoregressive distributed
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lag ARDL(1,1) model,

rt = α0 + α1rt−1 + β′0Xt + β′1Xt−1 + εt

where for generality we have added the constant term α0. To simplify the exposition,

assume that Xt is univariate, and rearrange the equation in its error-correction form

∆rt = −(1− α1)
(
rt−1 −

α0

1− α1
− β0 + β1

1− α1
Xt−1

)
+ β0∆Xt + εt, (26)

where the loading coefficient of the error-correction term is given by −(1 − α1): if the

coefficient equals zero, no cointegration exists; if instead −(1−α1) ∈ (−1, 0), there exists

cointegration and the disequilibrium only gets partially reabsorbed in one period; finally,

if −(1 − α1) = −1, we have full error correction in one period. The idea is to estimate

equation (26) to recover the loading and cointegration coefficients, and hence the predicted

natural interest rate. To better identify the parameters of the relationship we exploit the

cross-country variation in the data and estimate (26) in a Panel setting,

∆ri,t = −(1− α1)
(
ri,t−1 −

αi,0
1− α1

− β0 + β1

1− α1
Xi,t−1

)
+ β0∆Xi,t + εi,t (27)

which improves the precision of estimates by imposing cross-country homogeneity of the

loading and cointegration coefficients, while the intercept is allowed to be country-specific

to allow for some heterogeneity.
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F Other Tables and Figures

Table 2: Holston, Laubach, and Williams model: parameter estimates

Parameter This paper HLW2017

λg 0.043 0.053
λz 0.013 0.030∑
αy 0.950 0.942

γ 0.048 0.071
(3.370) (4.063)

κ 0.096 0.079
(2.705) (3.136)

σỹ 0.261 0.354
σπ 0.799 0.791
σy∗ 0.625 0.575
σg 0.108 0.122
σz 0.074 0.150

σr∗ =
√
σ2
g + σ2

z 0.131 0.194

Notes: t statistics are in parentheses, σg is expressed at annual rate.
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Table 3: Slopes of IS and Phillips curves: estimates in the literature

Sensitivity of output gap Sensitivity of inflation
to the interest rate gap to the output gap

(−γ) (κ)

United States Laubach and Williams (2003) -0.098 0.043
Clark and Kozicki (2005) -0.105 0.200
Trehan and Wu (2007) -0.130 0.260
Garnier and Wilhelmsen (2009) -0.180 0.103
Kiley (2015) -0.076 0.073
Pescatori and Turunen (2015) -0.060 0.150
Holston et al. (2017) -0.071 0.079
Wynne and Zhang (2017) -0.107 0.035
Juselius et al. (2018) -0.037 0.015

Euro area Mesonnier and Renne (2007) -0.190 0.160
Garnier and Wilhelmsen (2009) -0.056 0.051
Holston et al. (2017) -0.036 0.065

Canada Berger and Kempa (2014) -0.030 0.220
Holston et al. (2017) -0.067 0.044

Denmark Pedersen (2015) -0.400 0.010

Germany Garnier and Wilhelmsen (2009) -0.172 0.041

Japan Wynne and Zhang (2017) -0.043 0.532

South Africa Kuhn et al. (2017) -0.032 0.235

United Kingdom Holston et al. (2017) -0.009 0.490

World Wynne and Zhang (2018) -0.035 0.159

Notes: in Kiley (2015), κ measures the sensitivity of inflation to a measure of unemployment gap.
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Figure 17: Filter and parameter uncertainty of U.S. r∗: HLW and local level models

(a) Filter uncertainty (b) Parameter uncertainty

Notes: quarterly data, 1961Q2-2016Q3. Solid blue line refers to r∗ estimated by the local level model. Dotted red line
refers to r∗ estimated by the HLW model. Panel (a) reports 90% confidence bands which reflect filter uncertainty; panel
(b) reports 90% confidence bands which reflect parameter uncertainty. Bands are computed using Hamilton’s (1986)
approach with 2000 replications on the parameter vector.
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Figure 18: Nominal interest rates, inflation, and inflation expectations across countries

(a) Nominal short-term interest rate

(b) Inflation rate

(c) Inflation expectations

Notes: annual data, 1891-2016. Cross-country median in red, 68% and 90% bands in dark and light blue, respectively.
Data on nominal short-term interest rate and CPI inflation rate come from the Jordà-Schularick-Taylor (2017)
Macrohistory Database and OECD Main Economic Indicators. Measures of inflation expectations are constructed by
estimating a sequence of first-order autoregressive models on realized inflation with rolling twenty-years windows.
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Figure 19: Estimated natural rates across countries

Notes: annual data, 1891-2016. Estimated r∗ with 90% confidence bands. Bands reflect both filter and parameter uncer-

tainty, following Hamilton’s (1986) approach with 2000 replications on the parameter vector.
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Figure 20: Estimated volatilities

Notes: annual data, 1891-2016, for 17 economies.
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Figure 21: Estimated r∗ by Panel ECM and local level model

Notes: annual data, 1960-2016. Local level model estimates in dashed blue jointly with 68% confidence bands, Panel ECM

estimates in dotted red jointly with 68% confidence bands.
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