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Abstract

The purpose of the present paper is to highlight some features of global dynam-
ics of the two-sector growth model with accumulation of human and physical
capital analyzed by Brito and Venditti [14], which is a specification of the model
proposed by Mulligan and Sala-i-Martin [28]. In particular, our analysis focuses
on the context in which Brito-Venditti system admits two balanced growth
paths each of them corresponding, after a change of variables, to an equilibrium
point of a 3-dimensional system, and proves the possible existence of points P
such that in any neighborhood of P lying on the plane corresponding to a fixed
value of the state variable there exist points Q whose positive trajectories tend
to either equilibrium point. This implies that equilibrium selection in Brito-
Venditti system may depend on expectations of economic agents rather than on
the history of the economy. That is, economies with identical technologies and
preferences, starting from the same initial values of the state variables (history),
may follow rather different equilibrium trajectories according to the economic
agents’ choices of the initial values of the jumping variables (expectations).
Moreover we prove that the basins of attraction (two or three dimensional) of
locally indeterminate equilibrium points may be very large, as they may extend
up to the boundary of the system phase space.
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1 Introduction

Equilibrium selection in dynamic optimization models with externalities may
depend on expectations of economic agents rather than on the history of the
economy, as Krugman [19] and Matsuyama [21] pointed out in their seminal pa-
pers. Economies with identical technologies and preferences, starting from the
same initial values of the state variables (history), may follow rather different
equilibrium trajectories according to the economic agents’ choices of the initial
values of the jumping variables (expectations). A well known context in which
expectations matter is that in which the dynamic system describing the evolu-
tion of the economy admits a locally attracting equilibrium point (which may
correspond to a balanced growth path). In such a case, if the initial values of the
state variables are close enough to the equilibrium values, the transition dynam-
ics depend on the initial choice of the jumping variables and so there exists a
continuum of equilibrium trajectories that the economy may follow to approach
the equilibrium point. There exists an enormous literature about this type of
indeterminacy, which is known with the term “local indeterminacy”.1. The anal-
ysis of the linearization of a dynamic system around an equilibrium point gives
all information required to detect local indeterminacy (if the equilibrium point
is hyperbolic).2 The relative simplicity of local analysis explains why a great
amount of works in literature focuses on local indeterminacy issues. However
a fast growing number of contributions suggests caution in drawing predictions
on the future evolution of the economy based exclusively on local analysis; in
fact, local stability analysis refers to a small neighborhood of an equilibrium
point, whereas the initial values of the jumping variables do not have to belong
to such a neighborhood (see, among the others, [21, 33, 11, 13, 10, 16, 24]).
According to such works, global analysis of dynamic systems is necessary to get
satisfactory information about the equilibrium selection process. Global analy-
sis allows us to highlight more complex contexts in which equilibrium selection
is not univocally determined by the initial values of the state variables. The
indeterminacy, in such contexts, is called “global”. There is not a unique defini-
tion of “global indeterminacy” in economic literature, differently from the case
of local indeterminacy. Some authors (see, among the others, [13, 24])3 use the
term global indeterminacy to refer to all the contexts in which, given the initial
values of the state variables, there exists a continuum of equilibrium trajectories
which lies outside a “small” neighborhood of an equilibrium point. By such a

1See [9]. Even if the main body of the literature on local indeterminacy concerns economies
with increasing social returns (see, e.g. [6, 12]), a growing proportion of articles deals with
models where indeterminacy is obtained under the assumption of social constant return tech-
nologies, see, e.g., [9, 25, 27].

2In particular, local indeterminacy occurs if the number of eigenvalues with negative real
parts of the linearization matrix evaluated at the equilibrium point is greater than the number
of state variables. So, in a 2-dimensional system, we have local indeterminacy if and only if
the equilibrium point is a sink.

3In [24], it is simply stated: “If equilibrium is indeterminate for a reason different from the
case of local indeterminacy, it is said that equilibrium is globally indeterminate”.
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definition, global indeterminacy occurs, for example, if there exists an attract-
ing limit cycle around an equilibrium point (see, e.g., [22, 30, 32]). Therefore,
according to it, global indeterminacy may be observed even if a unique equilib-
rium point exists. Another definition of global indeterminacy (implicitly given
in [21] and explicitly stated, among the others, in [14, 34]) requires, instead, the
existence of at least two equilibrium points. Hence global indeterminacy occurs
if there exist multiple equilibrium trajectories, from a given initial condition,
approaching different equilibrium points. The latter definition can be extended
to take into account the scenario where the economy can follow equilibrium
trajectories converging towards different ω-limit sets, not necessarily coinciding
with equilibrium points. For example, in [11, 24], the economy can approach
either a locally determinate equilibrium point or an attracting homoclinic tra-
jectory. Notice that, according to the latter definition of global indeterminacy,
from given initial conditions the economy can follow equilibrium trajectories
along which the long run behavior of the state variables is rather different, in
that the trajectories converge to different ω-limit sets. This may not happen
when the equilibrium selection process is globally indeterminate according to
the former definition (for example, all the trajectories approaching a unique
limit cycle exhibit the same long run behavior). However, even in a context in
which there exists a unique ω-limit set, the long run behavior of trajectories
can be different, as is the case, in particular, when the ω-limit set is a chaotic
attractor (see, e.g., [1, 2, 13]). The purpose of the present paper is to show
examples proving the occurrence of global indeterminacy, in the two senses by
which it is known in literature, in the two-sector growth model with accumula-
tion of human and physical capital analyzed by Brito and Venditti [14], which
is a particular specification of the more general model proposed by [28]. The
Brito-Venditti 3-dimensional system can admit two balanced growth paths that
can be either simultaneously locally indeterminate (one with a 2-dimensional
stable manifold, the other with a 3-dimensional one) or only one indetermi-
nate and the other determinate (i.e. with a 1-dimensional stable manifold or
repelling). Therefore, the system offers a particularly rich environment where
to apply global analysis techniques. Obviously, our analysis is not exhaustive;
in fact, we limit ourselves to explore two cases where the Brito-Venditti sys-
tem admits two balanced growth paths, each of them corresponding, after a
change of variables, to an equilibrium point of a 3-dimensional system. In the
former one, the two equilibrium points have, respectively, a 2-dimensional and a
1-dimensional stable manifold (i.e. they are, respectively, in the Brito-Venditti
terminology, locally indeterminate of order 2 and determinate). In the latter
case, instead, the stable manifolds of the two equilibria have, respectively, di-
mension two and three (i.e. they are locally indeterminate of order 2 and 3). In
both cases we provide examples where we prove the existence of points P such
that in any neighborhood of P lying on the plane corresponding to a fixed value
of the state variable there exist points Q whose positive trajectories tend to ei-
ther equilibrium point (these results are illustrated in Figures 1, 2, 5, 6). In such
a context, the 2-dimensional stable manifold of the order 2 locally indeterminate
equilibrium, in the former case, and the basin of the attracting equilibrium, in
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the latter case, are both unbounded (i.e. they extend to the boundary of the
originary phase-space).

The results concerning the former case are obtained assuming that the
amount of externalities is the same in both sectors (i.e. b1 = b2 in the Brito-
Venditti model). Under such assumption, there exists an invariant plane and
the dynamics is completely described by a 2-dimensional system. In such a sim-
plified context, it is also possible to prove that when the locally indeterminate
equilibrium point becomes a repellor, a supercritical Hopf bifurcation occurs
giving rise to an attracting (i.e. endowed with a 2-dimensional stable manifold)
limit cycle. When this happens, global indeterminacy is observed (see Figure 1)
in a context where no equilibrium point is locally indeterminate (an analogous
result is obtained by [11, 16]).

In the latter case, the dimension of the Brito-Venditti system cannot be
reduced and consequently global analysis of the system becomes more complex.
In such a context, our result, i.e. the unboundedness, for suitable values of the
parameters, of the basin of the attracting equilibrium, appears to contain more
information than other global indeterminacy results, where the equilibrium is
shown to be globally indeterminate in the interior of a two-dimensional invariant
region enclosed by a periodic or homoclinic orbit (see, e.g., [11, 24]).

Very few authors have engaged in the investigation of global indeterminacy
in two-sector models with human and physical capital. In a context in which
a unique balanced growth path exists, [7] points out the possibility of a Hopf
bifurcation in the Lucas model (see also [20, 22, 23]). In a context in which two
balanced growth paths coexist, besides the cases in which the dynamics can be
fully analyzed by imposing specific conditions on parameter values (see e.g. [26]),
only [24] (to the best of our knowledge) uses global analysis techniques to prove
the existence of global indeterminancy according to the two definitions given
above. In particular, the authors analyze a model where physical capital is not
an input in the production process of human capital and apply a theorem due
to [18] to show that their dynamic system undergoes a homoclinic bifurcation.

The present paper has the following structure. Section 2 briefly presents the
set-up of the model of Brito and Venditti and the associated dynamic system.
Section 3 introduces a change of variables in the Brito-Venditti system and
retrieves some local analysis results contained in their paper which are useful
for global analysis. Sections 4, 5 deal with global analysis of the Brito-Venditti
model. A mathematical appendix containing some proofs concludes the paper.

2 The Brito-Venditti model

Brito and Venditti (see [14]) have analyzed a two-sector endogenous growth
model in which the representative agent solves the following optimization prob-
lem:

MaxC(t), K11(t), K21(t), K12(t), K22(t)

∫ +∞

0

C(t)1−σ − 1

1− σ
e−ρt dt
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subject to:

·
K1(t) = Y1(t)− C(t)
·
K2(t) = Y2(t) (1)

Yj(t) = ej(t)K1j(t)
β1jK2j(t)

β2j , j = 1, 2

Ki(t) = Ki1(t) +Ki2(t), i = 1, 2

Kj(0) > 0, {ej(t)}+∞
t=0 , j = 1, 2, given.

where K1(t) and K2(t) represent physical and human capital, respectively;
Kij(t) is the amount of capital good i = 1, 2 used in sector j = 1, 2; σ > 0 is
the inverse of the elasticity of intertemporal substitution in consumption; ρ > 0
is the discount rate.

Each technology Yj(t) is characterized by constant returns at the private

level, that is,
∑2
i=1 βij = 1, j = 1, 2, βij > 0. e1(t) and e2(t) are productive

externalities, assumed to be functions of physical capital by unit of efficient
labor, that is:

ej(t) = k(t)bj , j = 1, 2 (2)

where k(t) = K1(t)/K2(t), K1(t) and K2(t) are the economy-wide average
stocks of physical and human capital, and bj ∈ [0, 1]. Therefore, Brito and
Venditti assume external effects derived from a knowledge-based definition of
physical capital.

The representative agent considers K1(t) and K2(t) as exogenously deter-
mined; however, along the equilibrium trajectories, Ki = Ki and k(t) = k(t) =
K1(t)/K2(t) hold and the technologies Y1(t) and Y2(t) at the social level are:

Y1(t) = K11(t)
β11K21(t)

β21k(t)b1 = K11(t)
β11K21(t)

β21

(
K11(t) +K12(t)

K21(t) +K22(t)

)b1
Y2(t) = K12(t)

β12K22(t)
β22k(t)b2 = K12(t)

β12K22(t)
β22

(
K11(t) +K12(t)

K21(t) +K22(t)

)b2
Notice that Y1(t) and Y2(t) represent constant returns technologies. Therefore,
the economy-wide external effects are formulated in such a way that the return
to scale in both sectors are constant at the private and social levels. This
assumption meets the empirical findings of [5] about the aggregate returns to
scale in the US production and avoids the existence of private positive profits,
which would stimulate entry of new firms (see [8], p. 69).

It is worth to stress that K1(t) and K2(t) could be interpreted as other
forms of capital. The key distinction between these capital goods is that K1(t)
is a perfect substitute for consumption while this is not the case for K2(t) (see
[28] p. 742). Furthermore, notice that, in the general model proposed by [28],
constant returns to scale at the private and social levels can be obtained only

by posing ej(t) =
(
K1(t)

K2(t)

)bj
or ej(t) =

(
K2(t)

K1(t)

)bj
. That is, it is necessary to
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assume some type of “congestion effect” produced by one capital good on the
other, as done by Brito and Venditti.

The Hamiltonian and Lagrangian in current value associated to problem (1)
are respectively:

ℵ =
C(t)1−σ − 1

1− σ
+ P1 (Y1 − C) + P2Y2

L = ℵ+R1 (K1 −K11 −K12) +R2 (K2 −K21 −K22)

where Pi is the utility price and Ri the rental rate of good i = 1, 2.
Applying the Pontryagin maximum principle and using the normalization of

variables introduced by [15]:

k1(t) : = K1(t)e
−γt

k2(t) : = K2(t)e
−γt

c(t) : = C(t)e−γt

p1(t) : = P1(t)e
−γpt

p2(t) : = P2(t)e
−γpt

where γ > 0 and γp = −σγ < 0 represent, respectively, the (constant) rate
of growth of K1(t), K2(t), C(t) and the rate of decrease of P1(t), P2(t) along
a balanced growth path, Brito and Venditti obtain the 4-dimensional dynamic
system: 

·
p1 = p1 (ρ+ σγ − r1(π, k))
·
p2 = p2 (ρ+ σγ − r2(π, k))
·
k1 = (α11(π, k)− γ)k1 + α12(π, k)k2 − p

− 1
σ

1
·
k2 = α21(π, k)k1 + α22(π, k)k2 − γk2

(3)

where k1 and k2 are the state variables while p1 and p2 are the jumping variables,
with π := p2

p1
, k := k1

k2
. The transversality conditions are:

lim
t→+∞

p1 (t) k1 (t) e
[γ(1−σ)−ρ]t = lim

t→+∞
p2 (t) k2 (t) e

[γ(1−σ)−ρ]t = 0 (4)

with the assumption γ (1− σ) − ρ < 0. Any solution (k1(t), k2(t), p1(t), p2(t))
of system (3) satisfying the transversality conditions (4) and initial conditions
(k1(0), k2(0)) = (k01, k

0
2) is an optimal solution of problem (1) in that problem

(1) satisfies the Arrow’s condition (see [14]).
At an equilibrium point of (3) it holds, in particular, r1(π, k) = r2(π, k) =

r(π, k) and thus γ = r(π,k)−ρ
σ . The transversality conditions imply 0 < γ < r

Furthermore r1(π, k) := c1π
ψ21kb1ψ11+b2ψ21 , r2(π, k) := c2π

−ψ12kb1ψ12+b2ψ22 ,

αij(π, k) := ψijrj(π, k)π
j−i, ci := (β∗

i )
ψii

(
β∗
j

)ψji
i ̸= j, β∗

i := ββ1i

1i β
β2i

2i , b1, b2 ∈
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[0, 1].4 The coefficients ψij are the entries of the matrix:

Ψ =

(
ψ11 ψ12

ψ21 ψ22

)
=

1

β11 − β12

(
β22 −β12
−β21 β11

)
= B−1

where:

B =

(
β11 β12
β21 β22

)
is the matrix of private Cobb-Douglas coefficients satisfying β11 + β21 = β12 +
β22 = 1, β11 − β12 ̸= 0. Consequently, the entries of Ψ satisfy the conditions
ψ11 + ψ21 = ψ12 + ψ22 = 1, ψ11 · ψ22 > 0, ψii · ψij < 0 for i ̸= j. Furthermore
ψ12, ψ21 > 0 ⇐⇒ β11 < β12, ψ12 = ψ21 ⇐⇒ β12 = β21 and ψ11 = ψ22 ⇐⇒
β11 = β22.

3 A change of variables in the Brito-Venditti system

By posing π = eu, k = ev, p
− 1

σ
1 k−1

2 = ew (i.e. u = lnπ = ln p2
p1

= ln P2

P1
,

v = ln k = ln k1
k2

= ln K1

K2
, w = ln

(
p

1
σ
1 k2

)−1

= ln
(
P

1
σ
1 K2

)−1

), we obtain,

after multiplying the equations by ev (change of time), a 3-dimensional system
defined in R3, whose trajectories generate those of (3). Namely:

·
u = ev

(
r1(u, v)− r2(u, v)

)
= f (u, v)

·
v = ev

(
ψ11r1(u, v)− ψ22r2(u, v) + ψ12r2(u, v)e

u−v+
−ψ21r1(u, v)e

v−u)− ew = g (u, v)− ew
·
w = ev

(
− ρ

σ + r1(u,v)
σ − ψ22r2(u, v)− ψ21r1(u, v)e

v−u) = h (u, v)

(5)

where, by an abuse of language, ri(u, v) := ri(e
u, ev).

An equilibrium point (u, v, w) of system (5) corresponds to a 1-dimensional
manifold of equilibrium points of the Brito-Venditti system (3) defined, in the
space (γ, p1, p2, k1, k2), via the equations:

γ =
r(u, v)− ρ

σ

p1 =
(
ewk2

)−σ
p2 = πp1 = eup1 = eu

(
ewk2

)−σ
k1 = kk2 = evk2

The local analysis results of [14] can be retrieved by analyzing (5). In the
remaining part of this section we focus on those on which our global analysis is
built.

4Where ri represents the equilibrium rental rate Ri/Pi, i = 1, 2.
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Pose:

τ : =
b1ψ12 + b2ψ21

ψ12 + ψ21
(6)

δ : =
(b1 − b2) (ψ12 + ψ21 − 1)

ψ12 + ψ21

implying 0 ≤ τ ≤ 1, sgn (δ) = sgn (b1 − b2). Since τ = 0 ⇐⇒ b1 = b2 = 0, we
assume in the following τ > 0.

Then it is easily computed that the possible equilibrium points of (5) lie on

the plane u = δv + d, with d := (ψ12 + ψ21)
−1

ln c2
c1
. Moreover:

r1(δv + d, v) = r2(δv + d, v) = r (v) = ceτv, c > 0 (7)

It follows from straightforward computations that (5) has at most two equilibria
if and only if one of the following cases occur:

1. ψ12, ψ21 > 0 (implying ψ12, ψ21 > 1 and therefore |δ| < 1)

2. ψ12, ψ21 < 0, δ > 1 + τ , σ−1 − ψ22 > 0

3. ψ12, ψ21 < 0, 1 < δ < 1 + τ , σ−1 − ψ22 < 0.

(5) has at most one equilibrium in all the other cases except when δ = 1+ τ
and ψ21c+

ρ
σ = 0 or δ = 1 and σ−1−ψ22−ψ21c ≤ 0. In the latter cases (5) has

no equilibrium, except for δ = 1 + τ and ψ21c − ρ
σ = σ−1 − ψ22 = 0, when (5)

has infinite equilibria.
Remember that ψ12, ψ21 > 0 ⇐⇒ β11 < β12, where β11 and β12 measure,

respectively, the physical capital intensity in sectors 1 (final good sector) and 2
(human capital sector). Then the above results show that, as stressed by Brito
and Venditti, multiple equilibrium points (i.e. multiple balanced growth paths)
can arise in both contexts β11 < β12 (i.e. the final good is intensive in human
capital at the private level) and β11 > β12 (i.e. the final good is intensive in
physical capital at the private level).5

Now let P0 = (u0, v0, w0) be an equilibrium point of (5) and pose r (v0) = r0.
Then its Jacobian matrix is:

J (P0) =

 ∂f
∂u

∂f
∂v 0

∂g
∂u

∂g
∂v −ew

∂h
∂u

∂h
∂v 0

 (P0) (8)

where ∂f
∂u = ev0r0 (ψ12 + ψ21),

∂f
∂v = −δev0r0 (ψ12 + ψ21), while

∂g
∂u < 0. Then

set h̃ (v) := h(δv + d, v). It easily follows that:

sgn [detJ (P0)] = sgn
[
h̃′ (v0) (ψ12 + ψ21)

]
(9)

5The relevance, with respect to the existing literature, of the local analysis results illus-
trated in this section is exhaustively discussed in Brito and Venditti’s article.
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In particular, assume ψ12, ψ21 > 0 and two equilibria exist, P1 = (u1, v1, w1)
and P2 = (u2, v2, w2), with v1 < v2. Then det J (P1) > 0 > det J (P2).

Vice-versa, suppose ψ12, ψ21 < 0 and δ ≤ 1. In this case at most one
equilibrium P0 exists, where det J (P0) < 0.

The following Proposition rephrases one of the Brito-Venditti results:

Proposition 1. Let P be one of the equilibria of (5). Then δ ≥ 0 (i.e. b1 ≥ b2)
implies trace [J (P )] > 0.

Proof. See Appendix 6.1

In particular, if δ ≥ 0 (i.e. b1 ≥ b2: the amount of externalities in the final
good sector is greater than that in the human capital sector), P cannot be an
attractor. Hence, as underlined in Brito-Venditti’s article, the coexistence of two
local indeterminate equilibria (of order, respectively, two and three) can occur
only if b1 < b2 and ψ12, ψ21 > 0 (thus > 1). Finally the following Proposition
reformulates results stated in Theorem 5 of [14], illustrating the local stability
results relative to the above Cases 2 and 3, when two equilibria exist.

Proposition 2. Suppose in the above Cases 2 or 3 that two equilibria exist,
P1 = (u1, v1, w1) and P2 = (u2, v2, w2), with v1 < v2. Then in Case 2 P1 is
a repellor, while P2 is a saddle with a one-dimensional stable manifold. Vice-
versa, in Case 3 P1 is a saddle with a one-dimensional stable manifold, while
P2 can be either repelling or locally indeterminate of order two (i.e. its stable
manifold can be two-dimensional).

Proof. See Appendix 6.2

Example 1. Let in system (5) c1 = c2 = 1 (this can be always obtained by a
suitable translation of (u, v, w) and a rescaling of the parameter ρ and the time
variable t). Pose ψ21 = −ε− ε3, ψ12 = −ε2, σ−1 = 1− ε2, ρ = 2 exp(τv2)σε

4,
b1 = 1, b1− b2 = ε(1+ε)(1+ε+ε2)/(1+ε+ε2+ε3), where ε > 0 is sufficiently
small. Then the conditions of Case 3 are satisfied and there exist two equilibria,
P1 = (u1, v1, w1) and P2 = (u2, v2, w2), with v1 < v2 and exp(v2 − u2) = 2ε.
Hence it is easily checked that P1 is a saddle with a one-dimensional stable
manifold, while P2 is a saddle with a two-dimensional stable manifold.

4 Global analysis in a context with indeterminacy of order 2

Our aim is to show, via global analysis of system (5), examples proving the
occurrence of global indeterminacy in the two senses by which it is known in
literature. In fact we will consider two cases where system (5) exhibits two
equilibrium points. In the former one, object of the present section, the two
equilibria will have, respectively, a 2-dimensional and a 1-dimensional stable
manifold (i.e. they will be, in the Brito-Venditti terminology, locally indeter-
minate of order 2 and determinate)6. In the latter case, instead, the stable

6Notice that, in system (5), v is a state variable while u and w are jump variables. So, an
equilibrium point is locally determinate if it has a 1-dimensional stable manifold or is repelling
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manifolds of the two equilibria will have, respectively, dimension two and three
(i.e. one equilibrium will be attracting; in the Brito-Venditti terminology the
equilibria will be locally indeterminate of order 2 and 3). In both cases we will
prove, for suitable values of the parameters, the existence of points P = (u, v, w)
such that in any neighborhood of P lying on the plane v = v (corresponding to
a fixed value of the state variable k = k1/k2 = K1/K2)

7 there exist points Q
whose positive trajectories tend to either equilibrium. Moreover we will prove
that the 2-dimensional stable manifold of the order 2 locally indeterminate equi-
librium, in the former case, and the basin of the attracting equilibrium, in the
latter case, can be both unbounded.

We start by stating the following result.

Proposition 3. When δ = 0, the plane u = d (recall d = (ψ12 + ψ21)
−1

ln c2
c1
)

is invariant.

Proof. Recall that u = δv+ d implies r1(δv+ d, v) = r2(δv+ d, v) and thus (see

system (5))
·
u = 0. Hence, when δ = 0, u = d is invariant.

Therefore we first assume δ = 0 (i.e. b1 = b2: the amount of externalities
is the same in both sectors). In such a context, if ψ12, ψ21 < 0 (i.e. β11 > β12:
the final good sector is physical capital intensive at the private level), there
exists at most one equilibrium P0, lying on u = d, such that detJ (P0) <
0 < trace [J (P0)]. Hence P0 is locally determinate. If, instead, ψ12, ψ21 > 0
(i.e. β11 < β12: the final good sector is human capital intensive at the private
level), there can exist up to two equilibria lying on the invariant plane u = d.
Suppose this is the case and denote the two equilibria as P1 =

(
d, v1, w1

)
and

P2 =
(
d, v2, w2

)
, with v1 < v2 (note that, by (7), the growth rate γ associated

to P2 is higher than that associated to P1). Then detJ (P1) > 0 > detJ (P2),
while trace [J (P1)] , trace [J (P2)] > 0. Therefore P2 is locally determinate,
whereas P1 can be either repelling or locally indeterminate of order 2. As a
matter of fact, the system on the invariant plane u = d reduces to:{ ·

v = g̃(v)− ew
·
w = h̃(v)

(10)

where g̃(v) = g(δv + d, v), h̃(v) = h(δv + d, v). So, being δ = 0, it follows

that, on the plane u = d, g̃′(v) = ∂g
∂v and h̃′(v) = ∂h

∂v . Therefore P1 is locally

indeterminate of order 2 if and only if ∂g∂v (d, v1) < 0.

We refer to system (10), defined on the plane u = d. It is easily computed
that:

g̃(v) = r(v)(1 + ev−d)(ψ12e
d − ψ21e

v)

h̃(v) = ev
[
− ρ

σ
+ r(v)(

1

σ
+ ψ12 − 1− ψ21e

v−d)

]

7Remember that v = ln k = ln k1
k2

= ln K1
K2

.
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where r(v) = ceτv, τ = b1 = b2. Assuming ψ12, ψ21 > 0 (and thus > 1), it

easily follows that h̃(v) has two zeros, v1 < v2, if and only if h̃(v∗) > 0, where

v∗ = d+ln
τ( 1

σ+ψ12−1)
(1+τ)ψ21

. On the other hand the function w = ln g̃(v) is defined for

v < v = d+ln ψ12

ψ21
and has a maximum at the point v0, where e

v0 is the positive

solution of the equation ψ21e
−d (2 + τ)x2 − [ψ12 (1 + τ)− ψ21]x− τψ12e

d = 0.

Hence two equilibria exist if and only if there exist v1 < v2 such that h̃(v1) =

h̃(v2) = 0 and v2 < v. Moreover P1 =
(
d, v1, w1

)
has a two-dimensional stable

manifold if and only if v0 < v1.

Remark 1. Suppose all the previous conditions are satisfied. Then, by observing
the phase portrait of system (10), defined on u = d, it easily follows that P̃1 =

(v1, w1) is an attractor (in the plane u = d), P̃2 = (v2, w2) is a saddle and,
moreover, there is a repellor at the boundary point v = +∞, w = +∞ and an
attractor at the boundary point v = v, w = −∞. Consequently, if for suitable
values of the parameters (10) has no limit cycle, then the basin of attraction

of P̃1 (i.e. the two-dimensional stable manifold of P1) is limited by the stable

manifold of P̃2, connecting P̃2 to the repellor (+∞,+∞), and thus is unbounded.
In the following we provide an example where that occurs.

First of all, for sake of simplicity, we assume ψ12 = ψ21 = ψ > 1 (and thus
ψ11 = ψ22 = 1 − ψ).8 As a consequence c1 = c2 and therefore d = 0 and
v = 0 (i.e. ev = 1). Moreover g̃′(v0) = 0 implies e2v0 = τ

2+τ . It follows that

there exist two equilibria P̃1 and P̃2 of system (10), where the former is an

attractor and the latter a saddle, if and only if h̃(v0), h̃(0) < 0 while h̃(v∗) > 0,

with ev
∗
=

τ( 1
σ+ψ12−1)
(1+τ)ψ21

< 1. Denote, as above, by v1 < v2 the zeros of h̃(v)

for v ∈ (v0, 0). By suitably varying ρ and σ we can have v1 coincide with v0,
causing (generically) a Hopf bifurcation to occur. The following Proposition
holds

Proposition 4. Under our assumptions the Hopf bifurcation occurs and is su-
percritical (i.e. an attracting limit cycle arises around P̃1 when it becomes a
repellor).

Proof. See Appendix 6.3

Notice that, according to such a Proposition, the two coexisting ω-limit
sets, P̃2 and the limit cycle around P̃1, have respectively 1-dimensional and
2-dimensional stable manifolds lying in the plane u = d. It is worth to note
that this globally indeterminacy scenario occurs in a context in which P̃1 is
a repellor and P̃2 is locally determinate, that is, in a context in which no
equilibrium point is locally indeterminate (a similar result is obtained by [11,

8Remember that ψ12 = ψ21 ⇐⇒ β12 = β21 and ψ11 = ψ22 ⇐⇒ β11 = β22.
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24, 16]). Figure 1 shows a numerical simulation of the phase portrait of system
(10); observe that there exists an interval (which is, in fact, unbounded) of
values of the predetermined variable v from which the economy can approach
either P̃2 or the limit cycle around P̃1, according to the initial choice of the
jumping variable w (the initial value of the other jumping variable u is fixed

at the value u = d). In P̃1 the value of v (and consequently, by (7), the value

of the growth rate γ) is lower than in P̃2. However, even if the equilibrium

P̃1 is not (generically) reachable by the economy, there exist a continuum of

equilibrium growth trajectories approaching the cycle around P̃1. The basin
of attraction of the cycle is limited by the 1-dimensional stable manifold of
the locally determinate point P̃2. In particular, if the initial value v0 of the
predetermined variable v is high enough, then there always exists an interval
of initial values w0 of the jumping variable w such that the trajectory starting
from (v0, w0) approaches the limit cycle and there exist two values w1, w2 of
w such that the points (v0, w1) and (v0, w2) belong to the stable manifold of

P̃2. Notice that, in such a context, the economy may approach the locally
determinate point P̃2 by following rather different transition paths according to
the initial choice (w1 or w2) of w (a similar result is obtained in [11, 24], where
the existence of a homoclinic trajectory is proven).

Now we want to produce an example where P̃1 is an attractor of (10) with
an unbounded basin.

First of all we observe that system (10) can be regarded as a Liènard system
when v ∈ (−∞, v2). To fix the ideas, let us take τ = 0.5. Then v0 = −1

2 ln 5. If

h̃(v0) < 0 and the parameters ρ, σ, ψ are suitably chosen, an important Theorem
on the uniqueness of limit cycles for Liènard systems (see [35]) can be applied.
Precisely, consider the new variables x = v − v1, y = w − w1 and change t into
−t. Then the following Liènard system is defined in the strip −∞ < x < x,
where x = v2 − v1. { ·

x = λ (y)− Φ(x)
·
y = −γ(x)

(11)

where λ (y) = ew1(ey − 1), Φ(x) = g̃(v1 + x) − ew1 , γ(x) = h̃(v1 + x). Then,

posed x = v2− v1, x0 = v0− v1 < 0, φ (x) = Φ′(x), Γ (x) =
x∫
0

γ(z)dz, it is easily

checked that the smooth system (11), defined in the strip x ∈ (−∞, x), satisfies:

1. λ (y) is increasing and y · λ (y) > 0 when y ̸= 0

2. (x− x0) · φ (x) < 0 when x ̸= x0
3. x · γ (x) > 0 when x ̸= 0.

Moreover, by Theorem 3 of [35], if the further two conditions are met:

4 φ(x)
γ(x) is non-decreasing in (−∞, b), where b ∈ (−∞, x0) is defined by Φ(b) =

0 (i.e. g̃(v1 + b) = g̃(v1))

12
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Figure 1: Global indeterminacy scenario in which two ω-limit sets exist, P̃2 and the limit

cycle around P̃1, having respectively 1-dimensional and 2-dimensional stable manifolds lying
in the plane u = d. The (unbounded) basin of attraction of the limit cycle is limited by

the 1-dimensional stable manifold of the locally determinate point P̃2. Parameter values:

τ = 0.3, c = 1, ψ = 1.698, σ =
1

3
, ρ = 0.752877378571337.

5 the system of equations Φ(x) = Φ(z), Γ(x) = Γ(z) has at most one solution
for x ∈ (−∞, b), z ∈ (0, x)

then (11) has at most one limit cycle, which, if it exists, is simple (hence it
does not generate several limit cycles).

Example 2. Let, in system (5), δ = 0, τ = 0.5, ρ
c = 1

4√5
, σ = 1

3 , ψ12 = ψ21 =

1.698. Then (5) has two equilibria, P1 and P2, lying on the invariant plane
u = 0 and the planar system (11) satisfies the above conditions 1-5.

The following Theorem builds on Theorem 3 of [35] and gives sufficient
conditions under which system (10) does not admit limit cycles, and therefore,
for what we have said in Remark 1, the basin of attraction of P1 is unbounded.

Theorem 1. Assume system (5) has parameters δ = 0, τ = 0.5, ψ12 = ψ21 =
ψ > 0 (and thus > 1). Assume there exist two equilibrium points P1 and P2

being, for the system (10) defined on the invariant plane u = 0, respectively a
sink and a saddle. Then, if the planar system (11) satisfies conditions 1-5, the
basin of attraction of P1, on the plane u = 0, is unbounded and there exists a
trajectory leaving from P2 (as t→ −∞) and converging to P1 (as t→ +∞) (see
Figure 2).
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Figure 2: A numerical simulation of the phase portrait of system (10) with parameter values
satisfying the conditions of Theorem 1. The unbounded basin of attraction of the attractive
equilibrium P1 (which is a poverty trap) is limited by the 1-dimensional stable manifold of

the determinate equilibrium P2. Parameter values: ψ = 1.698, σ =
1

3
, τ = 0.5, ρ =

1
4
√
5
.

Proof. See Appendix 6.4

Figure 2 shows a numerical simulation of the phase portrait of system(10)
with parameter values satisfying the conditions of Theorem 1. The unbounded
basin of attraction of the attracting equilibrium P1 (which is a poverty trap) is
limited by the 1-dimensional stable manifold of P2. Notice that, if the initial
value v0 of the predetermined variable v is high enough, there exists a continuum
of initial values w0 of the jump variable w such that the trajectory starting
from (v0, w0) approaches P1 while the stable manifold of P2 can be selected
by choosing two different initial values of w. This is an interesting example of
indeterminacy because, given the initial value of v, the economy can approach
the locally determinate equilibrium P2 by following rather different transition
paths. Observe that in this case we possess a full description of the unbounded
basin of P1 (on the plane u = 0) and therefore of the global indeterminacy.
Finally, notice that, as in [21, 3], the poverty trap P1 can be reached even if
the initial value v(0) coincides with the value assumed by the predetermined
variable v at the locally determined equilibrium P2; symmetrically, P2 can be
reached even if the economy starts with an initial value of v coinciding with
that of the poverty trap P1.
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5 Global analysis in a context with indeterminacy of order 3

The above discussion shows that such a situation can take place only if two
equilibria exist with ψ12, ψ21 > 0 (thus ψ11, ψ22 < 0) and δ < 0.9 Thus it may
happen that the equilibria P1 = (u1, v1, w1) and P2 = (u2, v2, w2), u1 > u2
and v1 < v2, are respectively a saddle endowed with a two-dimensional stable
manifold and a sink. We will illustrate a case of this type, starting from a
bifurcation where P1 = P2 = P0 and P0 has one zero eigenvalue and two complex
conjugate eigenvalues with negative real part. Then we will prove that there
exists an open, unbounded region10 constituted by trajectories converging to P0

(as t → +∞). Consequently, when P1 is slightly separated from P2, the above
situation persists, i.e. the basin of attraction of P2 is unbounded; moreover,
when v ∈ (v1, v2), v2 − v1 being sufficiently small, there exists an open interval
I contained in the line

{
u = δv + d, v = v

}
whose trajectories converge to P2

(as t→ +∞), while the trajectory starting at one extreme of I tends to P1 (as
t → +∞). Hence a global indeterminacy scenario occurs: starting from any
initial value v(0) = v of the state variable v belonging to the interval (v1, v2),
the economy may approach either the poverty trap11 P1 or the equilibrium
point P2, according to the choice of the initial value of the jumping variable w.

Hence assume ψ12, ψ21 > 0, δ < 0 and two equilibria P1 and P2, defined
as above, exist, lying on the plane u = δv + d, d = (ψ12 + ψ21)

−1
ln c2

c1
. In

Appendix 6.5 we provide a description of of the system in a neighborhood of
such a plane, which helps in understanding the proofs of Theorems 5.1 and 5.2.

Now we consider the following configuration: P1 = P2 = P0

The Jacobian matrix J (P0) = J0 has one zero
and two complex with negative real part eigenvalues

(12)

Example 3. Let us take a system (5) where ψ12 = 1.1, ψ22 = −0.1, ψ21 =
2, ψ11 = −1. Assume P0 = (u0, v0, w0) to be an equilibrium of such a system.
Hence r1 (u0, v0) = r2 (u0, v0) = r0. By sake of simplicity let ρ = r0 (the
transversality conditions require ρ < r0). Then, if ψ21e

v0−u0 = ψ12 − 1, σ−1 =
(ψ12−1)(1−δ)

τ , δ = −0.615, τ = 0.645, it is easily checked that b1, b2 ∈ (0, 1), that
P0 is the unique equilibrium of (5) and, finally, that J0 satisfies the conditions
(12).

Theorem 2. Assume a system (5) with ψ12, ψ21 > 0 and δ < 0 has two coin-
ciding equilibria and satisfies (12). Then there exists a two-dimensional smooth
manifold through P0, whose trajectories converge to P0, separating a region R1

constituted by trajectories tending to P0 (as t→ +∞) from a region R2 consti-
tuted by trajectories leaving from P0 (as t→ −∞). Moreover R1 is unbounded.

9Remember that ψ12, ψ21 > 0 if and only if β11 < β12, that is, the final good is intensive
in human capital at the private level.

10By region we mean an open connected subset of R3.
11Remember that, by (7), the growth rate γ associated to each equilibrium point is positively

correlated with the equilibrium value of v.
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Proof. First of all, the existence of two coinciding equilibria in the point P0 =
(u0, v0, w0) implies u0 = δv0 + d and, posed h̃ (v) = h(δv + d, v), h̃ (v0) =

h̃′ (v0) = 0, while h̃′′ (v0) < 0 (as it is easily computed). Moreover, referring to

the expression (8) of J (P0), we have
∂h
∂u
∂f
∂u

(P0) =
∂h
∂v
∂f
∂v

(P0) = m. Consider, then,

the change of coordinates:

x = u− u0, y = v − v0, z = w − w0 −m (u− u0) (13)

Therefore, in the new coordinates, P0 = O = (0, 0, 0) and

J (O) =

 a b 0
−c −d −l
0 0 0

 (14)

where a, b, c, d, e > 0, a < d and (d− a)
2
< 4 (bc− ad). In fact, multiplying the

vector field of the system, in the new coordinates, by e−mx, we obtain a system
similar to (5), i.e. 

·
x = p (x, y)
·
y = q (x, y)− lez
·
z = s (x, y)

(15)

where O = (0, 0, 0) is the unique equilibrium, ∂s
∂x (0, 0) =

∂s
∂y (0, 0) = 0 and,

being h̃′′ (v0) < 0, (
∂2s

∂x2
δ2 + 2

∂2s

∂x∂y
δ +

∂2s

∂y2

)
(0, 0) < 0 (16)

Moreover, called z = − ln l + ln q (δy, y) = φ (y) , it can be easily checked that
φ′ (0) > 0 and φ′′ (0) < 0.

From straightforward computations it follows that the eigen-line associated
to the zero eigenvalue of J (O) is given by {x = δy, z = φ′ (0) y}, while the eigen-
plane associated to the complex conjugate eigenvalues of J (O) is z = 0. Take
now a sufficiently small neighborhood N of O. From the previous considera-
tions it follows that there exists a two-dimensional smooth manifold S, whose
trajectories converge to O, which separates N into two disjoint open subsets A1

and A2, containing, say, respectively the intersections of N with the positive
and negative z-semiaxis. Therefore the intersection with N of a central mani-
fold at O of (15), tangent to L = {x = δy, z = φ′ (0) y} in O, can be written as
Γ = Γ1 ∪ Γ2 ∪ {O}, Γ1 ⊂ A1, Γ2 ⊂ A2. Besides, straightforward calculations
show that, if N is small enough, the coordinates of Γ satisfy:

x = δy + ηy2 + h.o.t.
z = φ′ (0) y + h.o.t.

(17)

where η > 0 and h.o.t. = higher order terms. More precisely it can be shown
that for a sufficiently small N the equations of a central manifold Γ (i.e. of
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Figure 3: The figure shows, by utilizing the parameter values of Example 3, the dynamics of
trajectories converging to P0 in the half-space z > 0. Parameter values: δ = 0.6, τ = 0.645,
ρ = .1694098593, ψ12 = 1.1, ψ11 = −1, ψ22 = −0.1, ψ21 = 2.

an invariant manifold tangent in O to the line L) are of the type x = χ(y),
z = ζ (y), with χ (y) and ζ (y) smooth in a neighborhood of y = 0. Moreover
the central manifold is proven to be unique (see Appendix 6.6).

It follows that along Γ1 ∪ Γ2 x(t) increases, while y(t) and z(t) decrease
(recall (16)).

Consider now a point Q = (x, y, z) ∈ Γ1 and a sufficiently small disc D
centered in Q and lying in z = z. From what we have seen and from the Central
Manifold Theorem (see [17]) it follows that all the trajectories starting in D
converge to O and those from D − {Q} do so spiralling. In particular along

them
·
x (t) changes sign infinitely many times and thus they intersect infinitely

many times the plane x = δy (corresponding to
·
x = 0). Moreover all the

trajectories in A1 converge to O (if N is small enough), as they cross x = δy
alternately on each side of the line L and therefore eventually wind around Γ1

and so spiral toward O.
Our final step is to prove that along the negative trajectory starting from

a point of Γ1 x
(
t̃
)
decreases, where t̃ = −t. Suppose, by contradiction, this is

not the case. Then there should exist a first point R =
(
x
(
t̃∗
)
, y

(
t̃∗
)
, z

(
t̃∗
))

= (x∗, y∗, z∗) on the above mentioned trajectory such that x∗ = δy∗ (i.e.
·
x
(
t̃∗
)
= 0) and

·
x
(
t̃
)
> 0 for t̃ being in a right neighborhood of t̃∗. There-

fore, for what we have seen, it should be z∗ ≤ φ (y∗). Suppose z∗ < φ (y∗).
Then, by the continuous dependence of trajectories on initial conditions, there
should exist a small disc D̃ centered in R and contained in the planar re-
gion {x = δy, z < φ (y)}, such that all the positive trajectories starting from
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Figure 4: Zoom of the small region indicated in Figure 3, highlighting as the generic trajectory
converging to P0 winds around the central manifold.

D̃ would enter into A1 and then converge to O. Besides, all the positive tra-
jectories from D̃ − {R} would cross again x = δy for the first time at some

positive value of t. This way we can define a map ξ from D̃ − {R} into the
plane x = δy, which can be extended to R setting ξ (R) = O. Therefore ξ should

be a homeomorphism mapping D̃ onto an open neighborhood of O, which is
clearly impossible, since in any neighborhood of O on the plane x = δy there
exist points (with z < 0) whose orbits move away from O. Hence z∗ = φ (y∗).

Therefore, being
·
x
(
t̃∗
)
=

·
y
(
t̃∗
)
= 0, it follows

··
x
(
t̃∗
)
= 0, while

···
x
(
t̃∗
)
= −l ∂p

∂y
(x∗, y∗) ez

∗ ·
z
(
t̃∗
)
= l

∂p

∂y
(x∗, y∗) ez

∗
s (x∗, y∗) < 0 (18)

Hence
·
x
(
t̃
)
< 0 both in a left and a right neighborhood of t̃, which leads to

a contradiction. Consequently it can be proven (see Appendix 6.7) that along
the above trajectory (say the continuation of Γ1) x, y and z are all unbounded:
precisely, coming back to the original time t, lim

t→−∞
x(t) = −∞, lim

t→−∞
y(t) =

lim
t→−∞

z(t) = +∞. This completes the proof of the Theorem.

Figures 3 and 4 show, by utilizing the parameter values of Example 3, the
dynamics of trajectories converging to P0 in the half-space z > 0. Actually
Figure 4 zooms a small indicated region in the previous Figure, highlighting as
the generic orbit converging to P0 winds around the central manifold.

The following Theorem is in fact a Corollary of the previous one.
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Figure 5: Two trajectories starting from the same initial value of the state variable y = y =
0.0024 (remember that y = v − v1). The red trajectory starting from (x, y, z) = (0, y, ϵ),
with ϵ = −0.00884572, approaches the determinate equilibrium P1; the black trajectory,
converging to the locally attractive equilibrium P2, starts from (x, y, z) = (0, y, ϵ), with ϵ =
−0.00013805701. The parameter values are those given in the Example 4 with ρ = 0.3022682.

Theorem 3. Assume, in system (5), that ψ12, ψ21 > 0, δ < 0 and there
exist two equilibria, P1 = (u1, v1, w1) and P2 = (u2, v2, w2), with v1 < v2.
Moreover, suppose that P1 has a two-dimensional stable manifold, P2 is a sink
and both the Jacobian matrices J (P1) and J (P2) have two complex conjugate
eigenvalues. Then, if v2 − v1 is sufficiently small, there exists on every line{
u = δv + d, v = v

}
, v1 < v < v2, an interval I = (A,B) such that all the tra-

jectories starting from I converge to P2, while the trajectory starting from either
A or B converges to P1. Besides, the basin of attraction of P2 is unbounded.

Proof. See Appendix 6.8

The above Theorem proves the occurrence of global indeterminacy, in the
two senses by which it is known in literature, when ψ12, ψ21 > 0, δ < 0 and two
locally indeterminate (of order two and three, respectively) equilibrium points,
P1 = (u1, v1, w1) and P2 = (u2, v2, w2), with v1 < v2, exist. According to such
result, if v2−v1 is sufficiently small (i.e. if P1 and P1 are close enough), for every
initial value v ∈ (v1, v2) of the state variable v, there exists a continuum of initial
values w ∈ (a, b) of the jumping variable w such that the trajectory starting from
(u, v, w) =

(
δv + d, v, w

)
approaches P2 while the trajectory starting from either

(u, v, w) =
(
δv + d, v, a

)
or (u, v, w) =

(
δv + d, v, b

)
converges to P1.

Notice that the value of v (and consequently, by (7), the value of the growth
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Figure 6: Phase portrait of system (5) obtained with the same parameter values of the sim-
ulation in Figure 5. Only the red trajectory (the same illustrated in Figure 5) approaches
the determinate equilibrium P1; the black trajectories, starting from (x, y, z) = (0, y, ϵ) with
ϵ ∈ (−0.00884572,−0.00013805701), belongs to the basin of attraction of the equilibrium P2.

rate γ) in P2 is higher than in P1. Besides, the basin of attraction of P2 is
unbounded; in particular, as the proof of the above Theorem shows, there
exists a continuum of trajectories approaching the virtuous equilibrium P2 if the
initial value of the predetermined variable v (remember that v = ln k1

k2
= ln K1

K2
)

is high enough, that is if the initial ratio between physical capital K1 and human
capital K2 is high enough.

Example 4. Consider the system (5) with ψ12 = 1.1, ψ22 = −0.1, ψ22 = −0.1,

ψ21 = 2, ψ11 = −1, σ−1 = (ψ12−1)(1−δ)
τ , δ = −0.615, τ = 0.645. By a suitable

translation of u, v and a rescaling of t, ρ we can assume c1 = c2 = 1. Take
ρ < r (u0, v0) = r0, where (u0, v0) satisfies u0 = δv0, u0− v0 = ln ψ21

ψ12−1 = ln 20.
Then, if r0 − ρ is sufficiently small the system has two equilibrium points

P1 = (u1, v1, w1) and P2 = (u2, v2, w2), with v1 < v2, satisfying the conditions
of Theorem 3. Precisely P1 is a saddle with a two-dimensional stable manifold
and P2 is a sink.

We can consider a further linear change of coordinates, namely x = u −
δv, y = v − v1, z = w − w1 − m (u− u1) , m =

∂h
∂u
∂f
∂u

(u1, v1). This way P1 is

translated into the origin and P1, P2 lie on x = 0. On such a plane a line
y = y represents a fixed choice of the state variable. Then let z vary on a line
{x = 0, y = y, with 0 < y < v2 − v1}: for a suitable value of z close to 0, say
z = ε, the trajectory starting at (0, y, ε) spirals toward P1, while the trajectories
starting from points of the line with z > ε, up to a certain value of z, converge
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to P2 (see Figures 5-6).

Figures 5 and 6 illustrate the phase portrait of system (5) with the parameter
values suggested in the above example. Figure 5 shows two trajectories starting
from the same initial value of the state variable y (remember that y = v − v1),
one approaching P1 and the other converging to P2. Figure 6 is obtained with
the same parameter values; however more trajectories are plotted, all starting
from the same value of the state variable y. Notice that only one trajectory
approaches P1 while the others belong to the basin of attraction of the virtuous
equilibrium P2.
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6 Appendix

6.1 Proof of Proposition 1

Proof. Let P0 = (u0, v0, w0) be an equilibrium of (5). Then g (u0, v0) > 0 ⇔
ψ12e

u0 −ψ21e
v0 > 0, as it is easily checked. From straightforward computations

it follows that:

sgn

(
∂f

∂u
+
∂g

∂v

)
(P0) = sgn

 ψ12 + ψ21 + ψ11 − ψ22 − 2ψ21e
v0−u0+

τ(ψ11 − ψ22 + ψ12e
u0−v0 − ψ21e

v0−u0)+
δ
(
−ψ11ψ21 − ψ22ψ12 + ψ2

12e
u0−v0 + ψ2

21e
v0−u0

)

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Hence the coefficient of τ is positive, being equal to g (u0, v0) r
−1
0 e−v0 , and so is

the coefficient of δ, as ψ11ψ21, ψ22ψ12 < 0. Moreover:

ψ12 + ψ21 + ψ11 − ψ22 − 2ψ21e
v0−u0 = 2e−u0 (ψ12e

u0 − ψ21e
v0) > 0.

This proves the Proposition.

6.2 Proof of Proposition 2

Proof. Let us assume that, in Case 2 or 3, two equilibrium points exist, P1 =
(u1, v1, w1) and P2 = (u2, v2, w2), with v1 < v2. Then, in Case 2 det J (P1) >
0 > detJ (P2) and the reverse holds in Case 3. While δ > 0 implies in both
cases traceJ (Pi) > 0, i = 1, 2, it follows that P2 in Case 2 and P1 in Case 3
are saddles with a one-dimensional stable manifold, hence locally determinate.
When, instead, det(J) > 0, writing the characteristic polynomial as P (λ) =
λ3−trace(J)λ2+σ (J)λ−det(J), where, of course, σ(J) = det(J11)+det(J22)+
det(J33), it follows from straightforward computations that two negative real
part eigenvalues exist if and only if P (trace (J)) = σ (J) trace(J)−det(J) < 0.
In fact P (trace (J)) can be written as a function of δ, i.e. F (δ) = aδ2 + bδ+ c.
Then it can be calculated that in Case 2, when J = J (P1), F (δ) > 0 as
δ ≥ 1 + τ . Hence it follows that P1 is a repellor. Vice-versa in Case 3 P2 can
be locally indeterminate of order two, as Example 1 shows.

6.3 Proof of Proposition 4

Proof. We want to prove that the bifurcation of system (10), occurring as

h̃(v0) = g̃′(v0) = 0, is Hopf supercritical. To this end , since h̃′(v0) > 0,

let us replace w by kw, where k =
√

h̃′(v0)
g̃(v0)

, so that (10) becomes:{ ·
v = g̃(v)− ekw
·
w = k−1h̃(v)

Then it follows ([17]) that the above bifurcation is Hopf supercritical if and only
if:

g̃′′′(v0)−
k−1

ω
g̃′′(v0)h̃

′′(v0) < 0 (19)

where ω = k−1h̃′(v0).
As u = 0 and ψ12 = ψ21 = ψ > 1, we can write:

h̃(v) = pev [−m+ eτv (n− ψev)] , g̃(v) = qeτv
(
1− e2v

)
(20)

where p,m, n, q > 0.
Hence, recalling h̃(v0) = g̃′(v0) = 0, the inequality (19) can be checked

through straightforward computations.
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6.4 Proof of Theorem 1

Proof. If system (11) satisfies conditions 1-5, there exists at most one simple,

repelling limit cycle surrounding P̃1. Suppose, by contradiction, this is the
case and move P̃1 = (v1, ln g̃(v1) toward P̃0 = (v0, ln g̃(v0)), where g̃′(v1) <
g̃′(v0) = 0. More precisely, posed vα = αv0 + (1− α) v1, 0 ≤ α ≤ 1, we
choose smooth functions τ (α), ρ (α), σ (α), ψ (α), starting from the original
parameters, as α = 0, with τ (1) = τ (0) = 0.5, such that, for any α, (10) has

equilibria P̃α = (vα, ln g̃(vα)) and P̃2 = (v2, ln g̃(v2)). Moreover, as the original
system (α = 0) possesses a limit cycle, the trajectory γ (t), from a point of the

unstable manifold of P̃2 in the half-plane v < v2, intersects, if it does, the line
v = v2 at a point (v2, w

∗), w∗ < ln g̃(v2). Therefore we can choose the functions
τ (α), ρ (α), σ (α), ψ (α) in such a way that, for any α ∈ (0, 1], γα (t), defined
analogously as γ (t), intersects, possibly, the line v = v2 at a point (v2, wα),

wα ≤ ŵ < ln g̃(v2). Thus no saddle connection occurs as P̃1 moves to P̃0. As a
consequence, for any α ∈ [0, 1], system (10) has an odd number of limit cycles.

In fact, consider an intermediate equilibrium point P̃α = (vα, ln g̃(vα)) and the
analytical Poincaré return map f (w) defined on an open interval (a, b) of the
half-line {v = vα, w > ln g̃(vα)}, where b < bα, (vα, bα) being the intersection of

the half-line with the unstable manifold of P̃2. Hence, if a bifurcation occurs,
there is some w ∈ (a, b), where f (w) = w and f (w) − w has the same sign,
positive or negative, in a neighborhood of w for w ̸= w. Thus an even number
of limit cycles is possibly generated or removed. Moreover, by posing e

1
2v = x,

ew = y, system (10) is equivalent to a polynomial system defined in the invariant
half-plane x > 0, which has a finite number of limit cycles (see, e.g., [4]). Finally
a further limit cycle is generated by the Hopf bifurcation when v0 − v1 = ε > 0
is sufficiently small. Hence system (10) must have an even number greater than
zero of limit cycles when ε is sufficiently small. In this case the two equilibria
can be written as P̃1 = (v0 − ε, w1), P̃2 = (v2, w2), v0 < v2. Again, we observe
that by the change of variables x = v1 − v, y = w − w1, system (10) gives rise
to a Liènard system of the type (11) defined in (x,+∞), where x = v1 − v2. It
follows that, when ε is small enough, this system has at most one simple limit
cycle if:

1. g̃′(v)

h̃(v)
is non-increasing in (v0, v2);

2. the system of equations g̃(v) = g̃(z),
v∫
v1

h̃(s)ds =
z∫
v1

h̃(s)ds has at most one

solution for v ∈ (−∞, v0), z ∈ (v1, v2)

As straightforward, even if lengthy, calculations show the two conditions to be
satisfied , we get a contradiction, implying that the original system (10) has no
limit cycle.

6.5 Description of the dynamics in a neighborhood of the plane u = δv + d.

On such a plane, corresponding to
·
u = 0,

·
v = 0 is given by the graph

of a function w = φ (v) = ln g(δv + d, v), defined in an interval (−∞, v∗),
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v1 < v2 < v∗, which has exactly one point of maximum. On the other hand
·
w = 0 is the union, on the plane, of the two lines v = v1 and v = v2. It is easily

checked that, on such a plane,
·
v > 0 and

··
u > 0 in the region {v < v∗, w < φ (v)},

while
·
v < 0 and

··
u < 0 in the region {v < v∗, w > φ (v)} ∪ {v > v∗}; moreover

·
w > 0 (< 0) inside (outside) the strip {v1 < v < v2}. Next, consider a plane
parallel to u = δv + d, say u = δv + d, with d > d. Being everywhere ∂f

∂u > 0

and ∂g
∂u < 0, on such a plane we have

·
u > 0, while

·
v = 0 is given by the graph

of a function w = φ̃ (v), defined in an interval (−∞, ṽ), ṽ < v∗, such that, as

v < ṽ, φ̃ (v) < φ (v). Moreover, on this plane,
·
u − δ

·
v = 0 corresponds to the

graph of a function w = η̃(v), defined in an interval (−∞, v̂), ṽ < v̂, such that

φ̃ (v) < η̃ (v) for every v < ṽ; lastly,
(

·
u− δ

·
v
)

·
u > 0 if v < v̂ and w < η̃ (v),

while
(

·
u− δ

·
v
)

·
u < 0 if v < v̂ and w > η̃ (v) or v > v̂. Exactly the opposite

takes place in a plane u = δv + d, with d < d.

6.6 Uniqueness of the central manifold in Theorem 2

As we have seen, a central manifold in a neighborhood of O = (0, 0, 0) can
be represented as x = χ(y), z = ζ (y), with χ(0) = ζ (0) = 0, χ′(0) = δ,
ζ ′ (0) = φ′ (0) = −cδ−d

l > 0 (using the notations of (14)). First of all we check
that χ(y), ζ (y) are C∞ in a suitable interval [−y, y], y > 0. In fact, by induction,
let:

χ(y) =

k∑
i=1

αiy
i + αk+1y

k+1 + o
(
yk+1

)
ζ(y) =

k∑
i=1

βiy
i + βk+1y

k+1 + o
(
yk+1

)
k ≥ 1. Then, differentiating, we have:

·
x = χ′(y)

·
y (21)

·
z = ζ ′(y)

·
y

where (see (15))
·
x = p (x, y),

·
y = q (x, y) − lez,

·
z = s (x, y). Hence, after

straightforward computations,

(a+ δc)αk+1 + δlβk+1 = µ

φ′ (0) (cαk+1 + δlβk+1) = ν

where µ, ν are determined by α1, ..., αk, β1, ..., βk. So also αk+1, βk+1 are univo-
cally determined.

However this does not guarantee the central manifold to be analytic and
thus unique.

Therefore we assume, by contradiction, that there exist infinitely many cen-
tral manifolds. In fact we can bound ourselves to consider y > 0, as for y < 0 a
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trajectory lying on the central manifold tends to O as t → −∞, which implies
the central manifold in such half-space to be unique (see [31]).

Our first observation is that the pencil of central manifolds is bounded,
i.e., when y ∈ [0, y], y > 0 sufficiently small, all the central manifolds lie in a
parallelepiped [−x, 0] × [0, y] × [0, z], x, z > 0. This follows from the fact that
the trajectory starting at a point Q of the half-plane {x = δy, y > 0} sufficiently
close to O spirals toward O (as t→ +∞) crossing infinitely many times the plane
x = δy alternately on each side of the curve {x = δy, z = φ (y)} and thus of the
line {x = δy, z = φ′ (0) y}. Hence the pencil of central manifolds lies inside these
spirals.

Next we show that each central manifold (y, x(y), z (y)) is such to satisfy , in
a suitable interval [−y, y], a second-order differential equation x′′ = H (y, x, x′).
To this end, from (21) we derive:

ζ ′(y) =

·
z
·
x
χ′(y) =

p (y, χ (y))

s (y, χ (y))
χ′(y)

that is:

ζ (y) =

y∫
0

p (ỹ, χ (ỹ))

s (ỹ, χ (ỹ))
χ′(ỹ)dỹ (22)

On the other hand
·
x = χ′(y)

·
y yields p (y, χ (y)) = χ′ (y)

(
q (y, χ (y))− leζ(y)

)
,

from which we get ζ (y) as a function of y, χ (y) , χ′ (y). Therefore, differentiating
with respect to y, after easy steps we obtain:

p (y, χ (y))χ′′ (y) = R (y, χ (y) , χ′ (y))

Next we want to show that we can write:

p (y, χ (y)) = y2F (y, χ (y) , χ′ (y))
R (y, χ (y) , χ′ (y)) = y2G (y, χ (y) , χ′ (y))

(23)

where F (y, x, x′) and G (y, x, x′) are smooth and ̸= 0 in a neighborhood of
(0, 0, δ). In fact, for any k ≥ 1, let:

χ (y) =
k∑
i=1

αiy
i + αk+1χk+1 (y)

where α1, ..., αk are the same for any χ (y). From what we have observed, we can
consider, in a suitable interval [0, y], the lowest central manifold with respect to
x, i.e. x = χ∗ (y) such that χ∗ (y) ≤ χ (y) for any χ (y) when y ∈ [0, y]. From
the theory on central manifolds (see, [31]) it follows that there exist, for each
χ (y), two constants, c1 > 0 and c2 ≥ 0, such that:

χ (y)− χ∗ (y) = e−c1/y(c2 − f(y, χ (y))
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where 0 ≤ f(y, χ (y) ≤ c2 and f(y, χ (y) = 0 (χ (y)− χ∗ (y)). By differentiating
with respect to y, we can calculate c1and c2 and in fact we can write:

χ (y)− χ∗ (y) = e−c1(y,χ(y),χ
′(y))/yc2 (y, χ (y) , χ′ (y))

Analogously:

χ′ (y)− (χ∗ (y))
′
=
e−d1(y,χ(y),χ

′(y))/|y|d2 (y, χ (y) , χ′ (y))

y2

where the functions c1, d1 are > 0. Moreover, as χ (y) and χ′ (y) are uniformly
bounded when y ∈ [0, y], we can extend c1, c2, d1, d2 as functions of (y, x, x′)
defined in a suitable neighborhood of (0, 0, δ). Clearly these functions may not
be continuous in (0, 0, δ). However, for any k ≥ 1,the functions defined as:

e−c1(y,χ(y),χ
′(y))/yc2 (y, χ (y) , χ′ (y))

yk+1
and

e−d1(y,χ(y),χ
′(y))/yd2 (y, χ (y) , χ′ (y))

yk+1

when y > 0 and 0 when y ≤ 0 are smooth in a neighborhood of (0, 0, δ).
Then, recalling x′′ (0) = η > 0, (23) follows from straightforward computations.
Hence:

x′′ = H (y, x, x′) (24)

where H (y, x, x′) is smooth in a neighborhood of (0, 0, δ). But this implies the
existence of a unique solutions of (24) satisfying x (0) = 0, x′ (0) = δ, hence
yielding a contradiction. Therefore the central manifold is unique.

6.7 Unbounded trajectory converging to P0 in Theorem 2
Let Q ∈ Γ1, the intersection of the unique central manifold with the half-

space {z > 0}. Exchanging t with t̃ = −t, we have proved that the trajectory

starting at Q satisfies
·
x
(
t̃
)
< 0 when t̃ ∈ [0,∞). Suppose, by contradiction, that

lim
t̃→+∞

x
(
t̃
)
= x > −∞. On the other hand,

·
x
(
t̃
)
< 0 implies r1

(
t̃
)
> r2

(
t̃
)
,

i.e. y
(
t̃
)
> δ−1x

(
t̃
)
, while, being x

(
t̃
)
bounded, for any ε > 0 there exists

t̃ (ε) > 0 such that y
(
t̃
)
− δ−1x

(
t̃
)
< ε as t̃ ∈

(
t̃ (ε) ,+∞

)
, except, possibly,

in an interval of amplitude o (ε). Consider, now,
·
w
(
t̃
)
=

·
z
(
t̃
)
+m

·
x
(
t̃
)
. From

straightforward calculations it follows that, when t̃ > t̃ (ε), except possibly in
an interval of amplitude o (ε) ,

·
w
(
t̃
)
e−y(t̃) > λ (y, ε) = a+ b (1 + 0 (ε)) eτy

(
me(1+|δ|)y − n− p

)
where a, b,m, n, p > 0 are suitably defined and, by our assumptions, λ (0, 0) = 0,
∂λ(0,ε)
∂y = 0, ∂λ(y,ε)

∂y > 0 when y > 0. Then, by taking ε sufficiently small, it

follows, for t̃ > t̃ (ε), outside a possible interval of amplitude o (ε),
·
w
(
t̃
)
> k > 0

for a suitable k, implying lim
t̃→+∞

w
(
t̃
)
= +∞. Consequently y

(
t̃
)
→ +∞ and

x
(
t̃
)
→ −∞, yielding a contradiction. Therefore, as t̃ → +∞, x

(
t̃
)
→ −∞, so

that y
(
t̃
)
> δ−1x

(
t̃
)
tends to +∞ and the same does, as it can be easily seen,

z
(
t̃
)
.
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6.8 Proof of Theorem 3

Proof. Let v2 − v1 = ε > 0 sufficiently small. Then we can assume the system
to originate from a bifurcation where P1 = P2 = P0 = (u2, v2, w2). Consider a
point Q ∈ Γ1, the intersection of the above central manifold with {v > v2}, Q
being also in the attractive basin of P2 in the bifurcated system. Then, if ε is
small enough, the negative trajectory of Q remains close to Γ1 for a sufficiently
long time. More precisely, posed s = −t, we can take, for a sufficiently small
ε, some s > 0 so large that, called (u (s) , v (s) , w (s)) = (u, v, w), the following
holds:

1. v > δ−1
(
u− d

)
2. ew > max

v
g
(
δv + d, v

)
= max

v
g̃ (v) (recall lim

v→−∞
g̃ (v) = 0 and g̃ (v) < 0

when v is large enough)

3.
·
w (s) > 0.

Then inequalities 1. and 2. imply, respectively,
·
u (s) < 0 and

·
v (s) > 0.

Hence, for s > s, w (s) keeps increasing and because of 2. so does v (s), while
u (s) decreases. It follows, by the same arguments used in Appendix 6.7, that
such a trajectory is unbounded and, therefore, so is the basin of attraction of
P2.

Consider now the strip {v1 ≤ v ≤ v2}. Taking coordinates x = u − u1,

y = v − v1, z = w − w1 −m (u− u1), m =
∂h
∂v
∂f
∂v

(P1), it follows from the proof of

Theorem 2 that the stable manifold of P1 is tangent, at P1, to a plane close, if ε
is small enough, to z = 0 in a neighborhood of P1. Hence the manifold intersects
each line {x = δy, y = y, 0 < y < v2 − v1}. Therefore on such line there exists
an interval with the properties described in the statement of Theorem 3.
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