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Abstract

We consider an asymmetric auction setting with two bidders such that the valuation of each bidder

has a binary support. We prove that in this context the second price auction yields a higher expected

revenue than the first price auction for a broad set of parameter values, although the opposite result

is common in the literature on asymmetric auctions. For instance, when the probabilities of high

values are the same, the second price auction is superior unless the distribution of a bidder’s

valuation first order stochastically dominates the distribution of the other bidder’s valuation "in a

strong sense". We prove that this result extends to some degree to the case of unequal probabilities,

and to the case in which the valuation of each bidder is a three-point set. In addition, we show

that in some cases the revenue in the first price auction decreases when all the valuations increase.
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1 Introduction

This paper is about a seller’s preferences between a first price auction (FPA from now on) and a

second price/Vickrey auction (SPA from now on) when the bidders’ valuations are independently

but asymmetrically distributed. Precisely, we consider a setting with two bidders such that the

valuation of each bidder has a binary support (in our final section we consider supports including

three points). In this environment we first derive the unique equilibrium outcome and the expected

revenue in the FPA for all parameter values. Then we compare the revenue in the FPA with the

revenue in the SPA. We prove that the SPA yields a higher revenue than the FPA for a broad set of

parameter values, although the opposite result is common in the literature on asymmetric auctions

(we provide an overview of this literature later on in this introduction). For instance, on the basis

of numeric analysis for some classes of continuous distributions, Li and Riley (2007) claim that ”the

’typical’ case leads to greater expected revenue in the sealed high-bid auction” [i.e., in the FPA]; a

similar point of view is found in Klemperer (1999).

More in detail, we use λ1 (λ2) to denote the probability of a low value for bidder 1 (bidder 2),

and for the particular case in which λ1 = λ2 we find the following results.

• The revenue in the FPA may decrease when all the valuations increase, because increasing

the high value of one bidder may induce his opponent to bid less aggressively. This makes

the FPA inferior to the SPA.1

• The SPA is more profitable than the FPA for the seller if a bidder’s valuation is more variable
than the other bidder’s valuation,2 or if the distribution of a bidder’s valuation first order

stochastically dominates the distribution of his opponent’s valuation — but not too strongly.

Conversely, the FPA is superior to the SPA if the low value of a bidder is sufficiently larger

than the high value of the other bidder.3

When λ1 6= λ2 we show that several of the above results still hold, whereas others do not.

Furthermore we show that the SPA dominates the FPA if the bidders’ high values are the same.

Finally, we examine a particular setting in which each bidder’s valuation has a three-point

support, and for some small asymmetries we prove the same results we have obtained for binary

supports when λ1 = λ2.

1This result contrasts with a claim in Maskin and Riley (1985) for the case in which the only deviation from a

symmetric setting is given by unequal high valuations [this claim is reproduced in Klemperer (1999)]. However, for

this case Maskin and Riley (1983) agree with our ranking between the FPA and the SPA
2After Vickrey (1961), this is the first ranking result in the theoretical literature which does not rely on first order

stochastic dominance among the distributions of valuations.
3Doni and Menicucci (2011) study a procurement setting in which the auctioneer privately observes the qualities

of the products offered by the suppliers and needs to decide how much of the own information on qualities should be

revealed to suppliers before a (first score) auction is held. Our results on the comparison between the FPA and the

SPA when λ1 = λ2 contribute to determining the best information revelation policy for the auctioneer.
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In the rest of this introduction we provide an overview of the related literature. In Section 2

we describe the primitives of our model. In Section 3 we study equilibrium behavior in the SPA

and in the FPA. In Section 4 we present our results on the comparison between the FPA and the

SPA. Finally, in Section 5 we consider three-points supports. Sections 6-12 provide the proofs of

our results.

Related literature The analysis of the FPA when the bidders’ valuations are asymmetrically

and continuously distributed is often difficult because the equilibrium bidding strategies are charac-

terized by a system of differential equations (obtained from the first order condition for each type of

bidder) which has a closed form solution only in very particular cases. For instance, Kaplan and Za-

mir (2010) derive (the inverse) equilibrium bidding functions under asymmetrically and uniformly

distributed valuations; Plum (1992) and Cheng (2006) obtain closed form solutions for some special

cases of power distributions.4 Not surprisingly, matters are simpler if there are only two types for

each bidder, rather than a continuum. Indeed, in such a case Maskin and Riley (1983) derive in

closed form an equilibrium in mixed strategies under the assumption that the bidders’ low values

are coincident.5 Proposition 1 in our paper extends this result, as we remove their assumption that

the bidders’ low valuations coincide.

As it is well known, with asymmetric distributions the revenue equivalence theorem does not

apply, and the lack of a closed form for the equilibrium bidding functions complicates the comparison

between the FPA and the SPA.6 The known results show that there is not a general dominance

of an auction format over the other, but the SPA has been proved to dominate the FPA mainly

in some specific settings, whereas there exist results which establish the superiority of the FPA

for a relatively broad set of circumstances, and not only for some particular examples. Precisely,

Maskin and Riley (2000a) analyze a setting with continuously distributed valuations and show that

the FPA is superior to the SPA if a bidder’s valuation distribution satisfies suitable conditions

(which include log-concavity) and the other bidder’s valuation distribution is obtained by shifting

or stretching to the right the first bidder’s distribution. These results are obtained by examining

the properties of the system of differential equations which characterize the equilibrium bidding

strategies.

Kirkegaard (2011b) provides sufficient conditions for the FPA to dominate the SPA and his

main theorem generalizes the results in Maskin and Riley (2000a) [see also Kirkegaard (2011a)].

He makes two main assumptions. The first one is that the distribution of the valuation of one

bidder, the strong bidder, dominates the distribution for the other bidder, the weak bidder, in

4Cheng (2010) characterizes the auction environments such that each bidder’s equilibrium bidding function is

linear. He shows that this property requires that either each bidder’s value distribution is a power function, or is the

product of a power function and an exponential function.
5Cheng (2011) employs the same setting of Maskin and Riley (1983) in order to show that in some special cases

the asymmetry increases the expected revenue in the FPA, unlike in the examples studied in Cantillon (2008).
6 In order to circumvent this problem, some authors apply numerical methods: see for instance Fibich and Gavish

(2011), Gayle and Richard (2008), Li and Riley (2007), and Marshall et al. (1994).
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terms of the reverse hazard rate. The second assumption is more innovative and is related to a

dispersive order among c.d.f.s, according to which the distribution of the strong bidder is more

disperse than the distribution of the weak bidder; we refer to this assumption as to the ”dispersion

condition”.7 The approach in Kirkegaard (2011b) does not rely on differential equations, but on a

well known result from mechanism design which establishes that the seller’s expected revenue in an

auction is given by the expected virtual valuation of the winner, at least when the bidders’ lowest

types have the same valuation (see Myerson, 1981). In the SPA the winner is the bidder with the

highest valuation, but reverse hazard rate dominance and the dispersion condition imply that when

the two bidders have the same valuation, the weak bidder has a higher virtual valuation than the

strong bidder. Thus it is intuitive that the FPA is superior to the SPA if the weak bidder wins

more often in the FPA than in the SPA. In fact, the property of reverse hazard rate dominance

implies that in the FPA the weak bidder is more aggressive than the strong bidder, and therefore

sometimes he wins even though his valuation is smaller than the valuation of the strong bidder.

However, in some states of the world the weak bidder may be ”too aggressive”, and win even

though his virtual valuation is smaller than the virtual valuation of the strong bidder. This makes

the comparison between the FPA and the SPA not immediate, but Kirkegaard (2011b) shows that

there is no ambiguity in expectation under the dispersion condition, as it implies that the expected

virtual valuation of the winner (conditional on each given value of the weak bidder) is larger in the

FPA than in the SPA.

As we mentioned above, some papers identify settings in which the seller prefers the SPA. For

instance, Vickrey (1961) examines the case in which a bidder’s valuation is common knowledge and

the other bidder’s value is uniformly distributed. The SPA dominates the FPA if the commonly

known value is low enough. Maskin and Riley (2000a) consider the case in which a bidder’s

distribution is obtained from the other bidder’s distribution by shifting some probability mass to

the lower end-point, and in this case the SPA is superior if the initial distribution has an increasing

hazard rate. In the binary setting we mentioned above, Maskin and Riley (1983) show that the SPA

is better than the FPA if the bidders’ high values are approximately equal, or if the probabilities

of a high value are approximately equal.8

We compare the FPA with the SPA in the binary setting without the assumption that low

values are equal, and find that for a broad set of parameters the SPA is superior to the FPA,

as described above. Often, in order for the FPA to dominate the SPA it is necessary that the

distribution of a bidder’s valuation first order stochastically dominates the distribution of the other

bidder’s valuation ”in a strong sense”. For instance, for a not too large distribution shift we find

that the SPA is superior to the FPA, unlike in Maskin and Riley (2000a).

7Clearly, these conditions are not necessary for the FPA to dominate the SPA. Lebrun (1996) and Cheng (2006)

prove that the FPA is superior for some power distributions which violate the assumptions in Kierkegaard (2011b).
8Other specific cases in which SPA dominates FPA are found by Cheng (2010), in environments such that the

equilibrium bidding functions for the FPA are linear, and by Gavious and Minchuk (2010), in examples such that the

valuations’ distributions are close to the uniform distribution.

4



2 The model

A (female) seller owns an indivisible object which is worthless to her and faces two (male) bidders.

Let v1 (v2) denote the monetary valuation for the object of bidder 1 (bidder 2), which he privately

observes; v1 and v2 are independently distributed. The set {v1L, v1H} is the support for v1, with
0 < v1L < v1H and λ1 ≡ Pr {v1 = v1L} ∈ (0, 1). Likewise, the support for v2 is {v2L, v2H} with
0 < v2L < v2H and λ2 ≡ Pr {v2 = v2L} ∈ (0, 1). Without loss of generality we assume that

v1L ≤ v2L. Both the seller and bidders are risk neutral, and a bidder’s utility if he wins is given

by his valuation for the object minus the price paid to the seller; his utility if he loses is zero. We

use ij to denote bidder i when his valuation is vij , thus for instance 2L is the type of bidder 2 with

valuation v2L.

The main purpose of this paper is to evaluate the relative profitability of the FPA and the SPA

for the seller. In either of these auctions each bidder submits simultaneously a nonnegative sealed

bid, and the bidder who makes the highest bid wins the object (if the bidders tie, the winner is

selected according to a specified tie-breaking rule: see next section). In the FPA the winning bidder

pays the own bid; in the SPA he pays the loser’s bid (i.e., the second highest bid).

3 Equilibrium bidding

3.1 SPA

It is well known that when bidders have private values, in the SPA it is weakly dominant for

each bidder to bid the own valuation. Thus the seller’s expected revenue RS is the expectation of

min{v1, v2}, which is straightforward to evaluate (recall that v1L ≤ v2L):

RS =

⎧⎪⎨⎪⎩
λ1v1L + (1− λ1)(λ2v2L + (1− λ2)v2H) if v2H ≤ v1H

λ1v1L + (1− λ1)(λ2v2L + (1− λ2)v1H) if v2L ≤ v1H < v2H

λ1v1L + (1− λ1)v1H if v1H < v2L

. (1)

For future reference, we denote with A the region of valuations such that v1L ≤ v2L < v2H ≤
v1H , with B the region such that v1L ≤ v2L ≤ v1H < v2H , and with C the region such that

v1L < v1H < v2L < v2H . Therefore, (1) says that RS = λ1v1L + (1 − λ1)(λ2v2L + (1− λ2)v2H) in

region A; RS = λ1v1L+(1−λ1)(λ2v2L+(1−λ2)v1H) in region B; RS = λ1v1L+(1−λ1)v1H in C.

Notice that RS does not depend on v2H in regions B and C, and does not depend on v2L in region

C.

3.2 FPA

The analysis for the FPA is less immediate than for the SPA. In fact, finding the closed form for

the equilibrium bidding strategies for an FPA with asymmetrically distributed valuations is often

impossible when valuations are continuously distributed. However, this is not the case given our

assumptions on the distributions of v1 and v2 (we consider equilibria in which no type of bidder
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bids above the own valuation). We typically find a mixed-strategy Bayes-Nash Equilibrium, but

before describing it we consider a benchmark symmetric environment.

3.2.1 The benchmark symmetric setting

Suppose that v1 and v2 are symmetrically distributed such that v1L = v2L ≡ vL, v1H = v2H ≡ vH

and λ1 = λ2 ≡ λ. We know from Maskin and Riley (1985) that in this case the FPA has a unique

Bayes-Nash Equilibrium and it is such that types 1L and 2L both bid vL; types 1H and 2H play the

same atomless mixed strategy with support [vL, λvL+(1−λ)vH ] and c.d.f. GH(b) =
λ
1−λ

b−vL
vH−b . This

implies that the object is efficiently allocated (i.e., in each state of the world the highest valuation

bidder wins). Therefore, the expected revenue RF in the FPA is equal to the expected social surplus

λ2vL+(1−λ2)vH minus the bidders’ aggregate rents 2[λ · 0+ (1−λ)(vH −λvL− (1−λ)vH)], that

is RF = (2λ− λ2)vL + (1− λ)2vH (which is also equal to RS).

3.2.2 The equilibrium for the asymmetric setting

For the setting with asymmetrically distributed v1, v2 described by Section 2, we find that often

no pure-strategy Bayes-Nash equilibrium exists [the exception occurs when condition (3) below is

satisfied], and sometimes no mixed-strategy Bayes-Nash equilibrium (BNE in the following) exists

either. Precisely, when v1L = v2L we find that no BNE exists in the standard FPA in which each

bidder wins with probability 1
2 in case of tie (for more details see below in this subsection and

the proof to Proposition 1 in Section 6). However, Proposition 2 in Maskin and Riley (2000b)

establishes that a BNE exists under a suitable tie-breaking rule such that each bidder i is required

to submit both an ”ordinary” bid bi ≥ 0 and a ”tie-breaker” bid ci ≥ 0.9 If b1 6= b2, then c1, c2

are irrelevant but if b1 = b2 then bidder i wins if ci > cj and pays bi + cj (each bidder wins with

probability 1
2 if b1 = b2 and c1 = c2). Therefore c1, c2 are bids in a second price/Vickrey auction

which takes place if and only if b1 = b2. In Proposition 1 we consider the FPA with this ”Vickrey

tie-breaking rule”.

We want to stress that this particular tie-breaking rule is needed only when v1L = v2L, since

existence is obtained for any tie-breaking rule if v1L 6= v2L. Precisely, when v1L < v2L we find

that multiple BNE exist regardless of the tie-breaking rule, but they are all outcome-equivalent. In

particular, multiple BNE arise because type 1L (and type 1H in one case) never wins and needs to

bid weakly less than v1L (weakly less than v1H) with probability one, in such a way that no type of

bidder 2 has incentive to bid below v1L (below v1H). Since there are many strategies of 1L (of 1H)

which achieve this goal,10 multiple BNE exist. However, this multiplicity is only related to bids

which are never winning bids and therefore, as we specified above, each BNE generates the same

outcome in the sense that the allocation of the object, the payoff of each type of bidder and the

expected revenue are the same; therefore multiplicity is not an issue.

9A very similar idea appears in Lebrun (2002), in the auction he denotes with FP̄A.
10One example is such that 1L bids according to the uniform distribution on [αv1L, v1L] with α < 1 and close to 1.
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Conversely, when v1L = v2L in each BNE both types 1L and 2L bid v1L, and (generically) also

1H or 2H bids v1L with positive probability; suppose 2H does so (to fix the ideas). Then 2H ties with

positive probability with 1L by bidding v1L, and if 2H does not win the tie-break with probability

one, he has an incentive to bid slightly above v1L, which breaks the BNE. On the other hand, under

the Vickrey tie-breaking rule, for a bidder i with valuation vi submitting an ordinary bid bi, it is

weakly dominant to choose ci = vi− bi, and in particular c1L = 0, c2H = v2H − v1L > 0 for the case

we are considering; thus 2H wins the tie-break paying v1L in aggregate.11 Given this property on

weak dominance for tie-breaking bids, when we describe a strategy of bidder i we implicitly assume

that to each ordinary bid bi is associated a tie-breaking bid ci equal to vi− bi. Therefore, whenever
a tie occurs the bidder with the highest valuation wins and pays the valuation of the other bidder.

In the BNE described by Proposition 1(ii) below an important role is played by two specific

bids b̂ and b̄ such that b̂ is the smaller solution to the following quadratic equation (in the unknown

b):

λ2b
2+((1−λ2)v1H+(λ1 − λ2) v2L−λ1v1L−v2H)b+((1−λ1)v2H−(1−λ2)v1H)v2L+λ1v1Lv2H = 0 (2)

and b̄ ≡ λ2b̂ + (1 − λ2)v1H . Precisely, b̂ is the highest bid in the support of the mixed strategy

of type 2L, and b̄ is the highest bid in the support of the mixed strategies of types 1H and 2H .

The values of b̂ and b̄ are determined in such a way that the bidders’ mixed strategies have no

mass point at bids larger than v1L, a necessary condition for equilibrium. The assumption (4) in

Proposition 1(ii) implies that b̂ satisfies v1L ≤ b̂ < min{v2L, v1H}.12

Proposition 1 Given v1L ≤ v2L, consider the FPA with the Vickrey tie-breaking rule. Although

multiple BNE may exist, they are all outcome-equivalent to the following BNE.

Type 1L always bids v1L and the bids of the other types depend on the parameters as follows:

(i) If

v1H ≤ λ1v1L + (1− λ1)v2L (3)

then types 2L, 2H bid v1H ; type 1H bids weakly less than v1H with probability one and in such a way

that no type of bidder 2 has incentive to bid below v1H .
13

(ii) If

λ1v1L + (1− λ1)v2L < v1H <
(1− λ1)v2H + (λ1 − λ2)v1L

1− λ2
(4)

then types 1H , 2L, 2H play mixed strategies with support [v1L, b̄] for 1H , [v1L, b̂] for 2L, [b̂, b̄] for 2H ,

in which b̂ is the smaller solution to (2) and b̄ ≡ λ2b̂ + (1 − λ2)v1H . The c.d.f.s for the mixed

11 In fact, whenever 1L bids v1L and ties with positive probability with type 2j such that v2j > v1L, in each BNE

1L selects c1L = 0, otherwise it is profitable for 2j to bid slightly above v1L.
12See the proof of Proposition 1(ii).
13For instance, 1H bids according to the uniform distribution on [αv1H , v1H ] with α < 1 and close to 1.

7



strategies of 1H , 2L, 2H are, respectively:14

G1H(b) =

(
λ1(b−v1L)

(1−λ1)(v2L−b) for b ∈ [v1L, b̂]
1

1−λ1 (
v2H−b̄
v2H−b − λ1) for b ∈ (b̂, b̄]

(5)

G2L(b) =
v1H − b̄

λ2(v1H − b)
, G2H(b) =

1

1− λ2
(
v1H − b̄

v1H − b
− λ2). (6)

(iii) If
(1− λ1)v2H + (λ1 − λ2)v1L

1− λ2
≤ v1H (7)

then 2L bids v1L and 1H , 2H play mixed strategies with a common support [v1L, λ1v1L+(1−λ1)v2H ]
and the following c.d.f.s, for 1H , 2H respectively:

G1H(b) =
λ1

1− λ1

b− v1L
v2H − b

, G2H(b) =
1

1− λ2
(
v1H − λ1v1L − (1− λ1)v2H

v1H − b
− λ2). (8)

We discuss separately the three results in Proposition 1.

Case (i) When (3) holds, Proposition 1(i) establishes that each type of bidder 2 bids v1H and

wins for sure.15 This occurs because v2L is sufficiently larger than v1H , which implies that each

type of bidder 2 has so much to gain from winning that it is profitable for him to make a bid of v1H
in order to outbid each type of bidder 1. Precisely, (3) guarantees that type 2L (and thus type 2H
as well) prefers winning for sure by bidding v1H rather than bidding v1L and winning only when

facing type 1L, that is with probability λ1.

Case (ii) In the opposite case in which v1H is large, (3) is violated and 2L is not very aggressive

since he prefers to bid v1L and win only against 1L rather than bidding v1H and winning against

both 1L and 1H (i.e., with certainty), as the latter alternative is too expensive. Indeed, 2L bids

in the interval [v1L, b̂], with b̂ < v1H , and with an atom at the bid b = v1L, since G2L(v1L) =
v1H−b̄

λ2(v1H−v1L) > 0. This less aggressive bidding of 2L allows 1H to win with positive probability by

bidding in (v1L, b̂], which makes his equilibrium payoff positive. This implies that the highest bid

of 1H is smaller than v1H , since each bid in the support of a bidder’s mixed strategy needs to

maximize the expected payoff of the bidder given the strategies of the other types. Therefore also

the highest bid of 2H is smaller than v1H , as we see from Proposition 1(ii). As v1H increases, 2L
becomes increasingly less aggressive: b̂ decreases and G2L(b) increases for any b ∈ [v1L, b̂). This
occurs because as v1H increases, the equilibrium payoff of 1H increases and in order to satisfy the

14 In the case that b̂ = v1L (which occurs if and only if v1L = v2L), 2L bids v1L and b̄ = λ2v1L + (1− λ2)v1H , thus

G1H(b) =
1

1−λ1 (
v2H−b̄
v2H−b

− λ1) and G2H(b) =
1

1−λ2 (
v1H−b̄
v1H−b

− λ2) for each b ∈ [v1L, b̄].
15 In a setting with continuously distributed valuations, Maskin and Riley (2000a) identify an analogous BNE and

provide the intuition we describe here and immediately after Proposition 2. In addition, Maskin and Riley (1983)

identify the BNE we describe in Proposition 1 for the case of v1L = v2L = 0. Thus our Proposition 1 is a new result

for the case in which v1L < v2L and (3) is violated.
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condition of constant payoff of 1H for bids in (v1L, b̄] it is necessary that G2L puts more weight on

v1L and becomes flatter in (v1L, b̄].16

Case (iii) When v1H is large enough such that (7) is satisfied, type 2L bids v1L with certainty

and 2H bids v1L with positive probability. In particular, the larger is v1H , the less aggressive 2H
becomes, giving higher probability to bids close to v1L. We remark that (7) holds for a large λ1, and

thus for a large λ1 type 2L bids v1L with probability one, type 2H bids v1L with positive probability.

This occurs because a large λ1 gives an incentive to bidder 2 to bid b = v1L, as this (low) bid allows

him to win against type 1L, which arises with probability λ1. Finally, notice that when (7) holds,

the equilibrium strategies — and thus the expected revenue — do not depend on v2L.

A well known feature of the FPA when valuations are asymmetrically distributed is that an

inefficient allocation of the object occurs with positive probability. In our setting, suppose for

instance that v1L < v2L 6= v1H and (4) holds. Then b̂ > v1L and in the state of the world with

types 1H , 2L each type wins with positive probability; thus the highest valuation bidder may not

win.

4 Comparison between the FPA and the SPA

In order to derive the seller’s preferences between the FPA and the SPA we need to evaluate the

expected revenue RF in the FPA generated by the BNE described in Proposition 1. Although we

can express RF in closed form (see Subsection 6.3 in the appendix), the inefficiency of the FPA we

mentioned above makes RF a complicated function of the parameters, except when (3) is satisfied

(in fact, in such a case the object is allocated efficiently). Under inequality (3), the comparison

between RF and RS is straightforward, but when (3) is violated it is more difficult to obtain insights

on the sign of RF −RS. Therefore we first examine the relatively simple case such that λ1 = λ2,

and then we move to a more general setting without the assumption λ1 = λ2.

4.1 The case in which (3) is satisfied

When (3) holds we obtain a simple result, as described by next proposition.

Proposition 2 If (3) is satisfied, then RF > RS.

Proposition 2 is very simple to prove and to interpret. Precisely, (i) RF = v1H when (3) is

satisfied as both types of bidder 2 win the auction with a bid of v1H ; (ii) inequality (3) implies

v1H < v2L and thus from (1) we obtain RS = λ1v1L + (1− λ1)v1H ; (iii) since v1L < v1H , it follows

that RF > RS . The intuition is that in both auctions bidder 2 always wins, thus RS is equal to

the expected valuation of the loser, bidder 1, but RF is the high valuation of bidder 1. Notice that

any profile of valuations which satisfies (3) belongs to region C.

16We describe a similar effect (with more details) in the intuition regarding Lemma 1 below.
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4.2 The case in which λ1 = λ2

Under the assumption λ1 = λ2 we find the following interesting result.

Lemma 1 Suppose that v1L = v2L = vL, v1H 6= v2H = vH and λ1 = λ2 = λ. Then RF is increasing

in v1H for v1H ∈ (vL, vH ] and is decreasing in v1H for v1H ∈ [vH ,+∞).

This lemma says that in a setting which is asymmetric only because v1H 6= vH , RF is maximized

with respect to v1H at v1H = vH ,17 and in particular increasing v1H above vH reduces RF .18 In

fact, it is somewhat surprising that, starting from a symmetric setting, an increase in the valuation

of type 1H generates a decrease in RF . It seems reasonable to expect that an increase in v1H above

vH = v2H makes type 1H more aggressive than type 2H , in the sense that 1H bids (stochastically)

higher than 2H , and this occurs indeed in equilibrium. Crucially, however, it is not that 1H bids

more aggressively with respect to the symmetric setting, but rather type 2H bids less aggressively.

More in detail, notice that given λ1 = λ2, (7) is satisfied when v1H > vH and therefore Proposition

1(iii) applies. This reveals that the behavior of types 1L, 1H , 2L is unchanged with respect to the

benchmark symmetric setting of Subsection 3.2.1: 1L and 2L both bid vL, and 1H plays a mixed

strategy with support [vL, λvL + (1− λ)vH ] and c.d.f. GH(b) =
λ
1−λ

b−vL
vH−b . On the other hand, now

2H bids less aggressively than under the symmetric setting. Precisely, GH and G2H have the same

support [vL, λvL + (1− λ)vH ], but since G2H(b) =
(1−λ)(v1H−vH)+λ(b−vL)

(1−λ)(v1H−b) it is simple to verify that

G2H(b) > GH(b) for any b ∈ [vL, λvL + (1 − λ)vH), and in particular G2H(vL) > 0 = GH(vL).

Since 2H is less aggressive with respect to the symmetric setting, it follows that an increase in v1H

has a negative effect on RF . In fact, the larger is v1H the higher (lower) is the probability that

G2H attaches to low (high) bids in [vL, λvL + (1− λ)vH ]. As a consequence, RF is monotonically

decreasing with respect to v1H for v1H > vH .

Naturally, this raises the question of why 2H is less aggressive than in the symmetric setting.

Suppose for a moment that 2H still bids according to GH even though v1H > vH . Then the payoff

of type 1H from bidding b ∈ [vL, λvL+ (1− λ)vH ] is (v1H − b)[λ+ (1− λ)GH(b)]. This is obviously

higher than (vH−b)[λ+(1−λ)GH(b)], his payoff before the increase in v1H , and — more importantly

— is increasing in b because the higher is b, the more likely is that 1H wins and thus benefits from

his higher valuation. In order to make 1H indifferent among the bids in an interval (vL, b∗], with

b∗ > vL, it is necessary that G2H is flatter than GH , and indeed G2H(b) =
(1−λ)(v1H−vH)+λ(b−vL)

(1−λ)(v1H−b)
has an atom at b = vL and grows more slowly than GH for b > vL. This is how an increase in v1H

generates a less aggressive behavior of 2H . However, notice that the support for the mixed strategy

of 2H is still [vL, λvL + (1 − λ)vH ], which requires that type 1H still bids like in the symmetric

setting in order to make 2H indifferent among all the bids in [vL, λvL + (1− λ)vH ].19

17This fact may appear similar to the main message in Cantillon (2008), but in fact in our analysis the benchmark

symmetric setting is fixed, whereas in Cantillon (2008) it is not.
18Obviously, an analogous result holds if v1H is kept fixed and v2H is allowed to vary.
19Lebrun (1998) considers a setting with continuously distributed valuations and assumes that the valuation dis-

tribution of one bidder changes into a new distribution which dominates the previous one in the sense of reverse

10



Lemma 1 suggests a simple result. Suppose that we start from the benchmark symmetric

setting and let RF∗ denote the resulting expected revenue. Then suppose that the valuation of

1H is increased; this reduces the revenue below RF∗ by Lemma 1. Finally, increase slightly the

valuations of 1L,2L,2H . Since RF is a continuous function of the parameters, we infer that RF

remains smaller than RF∗, although the valuation of each type has increased with respect to the

symmetric setting.

Proposition 3 Consider the symmetric setting described in Subsection 3.2.1. Then, by suitably
increasing the valuation of each type (but not each valuation by the same amount) we obtain a

setting in which the revenue from the FPA is reduced.

An instance in which the result in this proposition is obtained is such that v1L = v2L = 100,

v1H = v2H = 200 and λ1 = λ2 =
1
2 ; then RF∗ = 125. However, if v1L = v2L = 105, v1H = 400 and

v2H = 205, then RF ' 123.12.

Next proposition describes a set of circumstances which imply RS > RF given λ1 = λ2. In

doing so, it relies on Lemma 1 and on the fact that the BNE described by Proposition 1(iii) is

independent of v2L, for v2L ∈ [v1L, v2H). The rest of this subsection is devoted to discussions and
intuitions for these results.

Proposition 4 Suppose that λ1 = λ2 ≡ λ.

(i) RS > RF if at least one of the following conditions is satisfied:

v1L = v2L and v1H 6= v2H ; (9)

v1L < v2L < v2H ≤ v1H ; (10)

v1L ≤ v2L ≤ v1H < v2H with v2L close to v1L; (11)

v1L < v2L < v2H with v2L ≤ v1H +
2λ− 1
3− 2λ(v1H − v1L) and λ ≥ 1

2
. (12)

(ii) For values such that v1L < v1H < v2L < v2H , the difference RF −RS is increasing in v2L.

In terms of the regions A,B,C introduced in Subsection 3.1, Proposition 4(i) [condition (10)]

reveals that RS > RF in region A. The inequality RS > RF holds also in region B for v2L close

to v1L, and in the whole region B if λ ≥ 1
2 : see conditions (11) and (12).

20 Figure 1 in Subsection

4.2.3 provides a graphical representation of these results for the case of λ ≥ 1
2 .

Finally, Proposition 4(ii) establishes that in region C, RF − RS is increasing with respect to

v2L, that is an increase in v2L favors the FPA with respect to the SPA. This is consistent with

Proposition 2, since an increase in v2L brings us closer to satisfying (3), which implies RF > RS.

hazard rate domination (the support is unchanged). He show that, as a consequence, for each bidder the new bid

distribution first order stochastically dominates the initial bid distribution, and thus the expected revenue increases.
20 In particular, the SPA is better than the FPA for any small deviation from the symmetric setting, that is when

v2L − v1L and v2H − v1H are close to zero, but v2L − v1L > 0 and/or v2H − v1H 6= 0.
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4.2.1 Condition (9): v1L = v2L and v1H 6= v2H

We start by considering (9), and suppose that v1H > v2H . Then from Lemma 1 we deduce that

RS > RF since an increase in v1H above v2H reduces RF but does not affect the distribution of

min{v1, v2}, and thus RS does not change.

For the case of v1H < v2H , consider the symmetric setting with low valuations both equal to

v1L = v2L and high valuations both equal to v1H ; then RF = RS . Now increase the valuation of

type 2H above v1H to obtain the asymmetric setting we are considering. Although RS does not

change, the logic of Lemma 1 (see footnote 18) reveals that RF decreases. Hence RF < RS.

We have thus established that (9) implies RS > RF as a corollary of Lemma 1, but we notice

that Maskin and Riley (1985) (in their Section III) consider the setting of Proposition 4, except

that they assume v1L = v2L = 0, and claim that an increase in v2H above v1H favors the FPA

over the SPA, in contrast with Proposition 4. However, they do not provide a formal proof of their

claim. On the other hand, Maskin and Riley (1983) conclude that RS > RF , consistently with

Proposition 4(i): see their Figure 1 between pages 18 and 19.21

4.2.2 Condition (10): v1L < v2L < v2H ≤ v1H

Condition (10) has effects which are almost straightforward. In case that v2H = v1H , (7) is satisfied

and Proposition 1(iii) applies. Hence RF is equal to the revenue in the symmetric setting with

both low valuations equal to v1L since (as we mentioned in Subsection 3.2.2) RF does not depend

on v2L ∈ (v1L, v2H). However, (1) reveals that RS is increasing in v2L and therefore RS > RF .

In case that v2H < v1H , suppose first that v1L = v2L. We know from condition (9) that

v2H < v1H implies RS > RF , and the previous paragraph explains that an increase in v2L has no

effect on RF , but increases RS. Hence RS > RF still holds.

v1 more uncertain than v2 The inequalities in (10) characterize the setting in which v1 has a

wider range of variability than v2; this includes the special case in which v1 is a mean-preserving-

spread of v2. In this setting the ranking between RS and RF is unambiguous: the SPA is better

than the FPA when a bidder’s valuation is more uncertain then the other bidder’s valuation.

Kirkegaard (2011a) notices that only Vickrey (1961) provides a theoretical ranking result with-

out assuming first order stochastic dominance between the bidders’ distributions of valuations.22

Precisely, Vickrey (1961) assumes that v1 is uniformly distributed over [0, 1] and v2 is common

knowledge, equal to a fixed value a; he proves that the FPA is superior to the SPA for a > 0.43.

Now consider in our framework the parameters λ = 1
2 and v1L = 0, v1H = 1, v2L = a−ε, v2H = a+ε

21Since they assume v1L = v2L = 0, Maskin and Riley (1983) do not consider the various cases covered in

Proposition 4, and they do not have the results in Lemma 1 and Proposition 5.
22Gayle and Richard (2008), Li and Riley (1999) and Li and Riley (2007) apply numeric analysis to settings without

first order stochastic dominance and obtain mixed results.
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with ε > 0 and close to zero.23 This setting is in a sense similar to that in Vickrey (1961) since v1 is

uniformly distributed over {0, 1}, and v2 is almost commonly known to be equal to a.24 However,

Proposition 4(i) [condition (10)] establishes that RS > RF for any a ∈ (0, 1). This difference with
respect to Vickrey (1961) arises because in our setting RF is considerably lower than in Vickrey

(1961), due to the fact that type 2L bids v1L = 0 with certainty (and type 2H bids 0 with positive

probability), as bidding 0 suffices to win the auction if his opponent is type 1L, an event with

probability 1
2 . It is this incentive of bidder 2 to play ”low-ball” that makes R

F small.25 Conversely,

no such effect appears when v1 is uniformly distributed over [0, 1] because if bidder 2 bids close to

zero then he wins only against a small set of types of bidder 1. For instance, if a = 1
2 then Vickrey

(1961) proves that bidder 2’s equilibrium mixed strategy has support [14 ,
7
16 ], that is 2’s minimum

bid is 14 .

4.2.3 Conditions (11) and (12)

Given the innocuous assumption that v1L ≤ v2L, after (9) and (10) have been considered, the only

class of asymmetry remaining given λ1 = λ2 is such that v1L < v2L and v1H < v2H , which implies

that the distribution of v2 first order stochastically dominates the distribution of v1. In this setting,

(11) establishes that RS > RF when v2L− v1L is close to zero, a consequence of (9). But in fact, if

λ ≥ 1
2 then RS > RF holds even though v2L− v1L is not small, as long as v2L ≤ v1H , that is in the

whole region B. In words, in order for RF > RS to hold it is not sufficient that the distribution of v2
first order stochastically dominates the distribution of v1, but it is necessary that v2L is sufficiently

larger than v1L; when λ ≥ 1
2 , R

F > RS actually requires v2L > v1H , which means that the profile

of valuations is in region C. In this region an increase in v2L favors the FPA with respect to the

SPA, which is consistent with Proposition 2 as we noticed above.

It is interesting to inquire why a higher value of λ enlarges the set of valuations for which we can

prove that RS > RF and, in short, the reason is that a larger λ makes the bidders less aggressive in

the FPA (but obviously does not affect their behavior in the SPA). In order to explain how (12) is

obtained, recall that in our final remark in Subsection 3.2.2 we noticed that in the BNE described

by Proposition 1(ii) the highest valuation bidder does not always win. Conversely, the efficient

allocation is always achieved in the SPA. Therefore a sufficient condition for RS > RF is that the

aggregate bidders’ rents in the FPA, UF , are (weakly) larger than the rents in the SPA, US.26 It

turns out that UF ≥ US reduces to v1L + v2L ≥ 2b̂ when the valuations are in region B, and to

v1L + 2v1H − v2L ≥ 2b̂ when the valuations are in region C. This suggests that the SPA is more

likely to be superior to the FPA the smaller is b̂, which is quite intuitive as b̂ can be viewed as an

index of how bidders are aggressive in the FPA, given that the highest bids submitted by types
23Proposition 1 still holds even though v1L = 0 violates our assumption v1L > 0. However, when v1L = 0 the

Vickrey tie-breaking rule is needed also if v1L 6= v2L.
24 If we set ε = 0, then v2L = v2H , which violates the assumption v2L < v2H , but nevertheless λG2L(b) + (1 −

λ)G2H(b) is the c.d.f. of the equilibrium mixed strategy of bidder 2 when v2L = v2H .
25This effect appears also in Example 3 in Maskin and Riley (2000a).
26Each of conditions (11) and (12) guarantees indeed that UF ≥ US .
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1H , 2L, 2H are b̄, b̂, b̄, respectively, with b̄ = λb̂+ (1− λ)v1H . In order to inquire how b̂ depends on

λ, we need to recall that the support for the mixed strategy of type 2L is [v1L, b̂], and λ(v2L− v1L)

is the rent of 2L, the expected payoff he obtains by bidding b = v1L. Also the bid b = b̂ needs to

yield 2L the same payoff λ(v2L − v1L), and this suggests that b̂ is decreasing in λ [indeed we can

use (2) to prove this result formally].

In Figure 1 we fix λ ≥ 1
2 and v1L, v1H , and partition the space (v2L, v2H) in two regions S and

F such that RS > RF if (v2L, v2H) ∈ S, and RF ≥ RS if (v2L, v2H) ∈ F — obviously, the feasible

values of (v2L, v2H) are above the line v2H = v2L. In particular, S(iii) is region A, the set in which

(10) is satisfied [in this case (7) holds and the BNE of Proposition 1(iii) applies]; F(i) is the set in

which (3) holds [then the BNE of Proposition 1(i) applies]. The remaining set includes the whole

region B and a subset of C, and is such that (4) is satisfied — thus the BNE of Proposition 1(ii)

applies. The boundary between S and F is obtained numerically.

insert Figure 1 here

Caption Figure 1: Comparison between the FPA and the SPA when λ1 = λ2 ≥ 1
2 . In the dark

grey region S = S(ii) ∪ S(iii) the SPA dominates the FPA in terms of the seller’s revenue. In the
light grey region F = F(i) ∪F(ii) the FPA is superior. Proposition 1(i) applies in the north-east set
F(i), 1(ii) in the set F(ii) ∪S(ii) in the middle and north-west, and 1(iii) in the south-west set S(iii).

Distribution shift and rescaling A particular type of asymmetry considered in the literature is

as follows. Given the c.d.f. F1 for the valuation of bidder 1, the c.d.f. for v2 is F2(v2) = F1(v2−α)

with α > 0, that is F2 is obtained by shifting F1 to the right, which implies that bidder 2 is

ex ante stronger than 1. In a setting with continuously distributed values, Maskin and Riley

(2000a) prove that under suitable assumptions on F1 (which include convexity and log-concavity)

the FPA generates a higher revenue than the SPA; Kirkegaard (2011b) obtains the same result

under weaker assumptions. In our context this sort of asymmetry is obtained by fixing v1L, v1H

and setting v2L = v1L + α, v2H = v1H + α, for some α > 0. From (11) and (12) we can obtain

sufficient conditions for RS > RF , but in fact in the appendix we exploit this particular structure

of asymmetry to prove a stronger result: RS > RF as long as α
v1H−v1L ≤

2λ
2−3λ (for λ ≤

2
5) or

α
v1H−v1L ≤

2(2+λ)
3(2−λ) (for λ > 2

5).

These results have an immediate interpretation: In our discrete setting a small shift, that is a

small α > 0, favors the SPA over the FPA, whereas the result is reversed for a large shift.27 On the

other hand, in their numeric analysis applied to continuous distributions, Li and Riley (2007) find

that a shift ”can result in economically very significant revenue differences [in favor of the FPA]”

for examples with uniform or truncated normal distributions, and claim that ”Analysis of other

distributions also produces broadly similar results”. Our results show that this claim does not hold

in a setting with binary supports.

27For instance, RF > RS definitely holds if α > 0 is such that (3) is satisfied, that is if α
v1H−v1L

≥ 1
1−λ .
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In fact, it is possible to see the result that RS > RF for a small shift as a consequence of

Lemma 1. Precisely, (i) for α = 0 there is no shift and we are in the benchmark symmetric setting

of Subsection 3.2.1; (ii) from (2) we find that ∂b̂
∂α

¯̄̄
α=0

= 0, thus ∂b̄
∂α

¯̄̄
α=0

= 0; (iii) for any α > 0, (4)

holds and thus (6) in Proposition 1(ii) reveals that a small α > 0 generates a zero first order change

in the bidding of types 2L and 2H ; (iv) the logic of Lemma 1 [see footnote 18, or equivalently see

(5)] reveals that 1H bids less aggressively for a small α > 0 than for α = 0. Therefore a small shift

reduces RF but increases RS, which implies RF < RS .

Example 4 in Kirkegaard (2011a) starts from F2 such that F2(ev) is convex and log-concave

and obtains F1 as F1(v) = F2(γv) for some γ > 1 and not too large; thus v1 is a rescaling of v2,

and Kirkegaard (2011a) proves that RF > RS. In our context this sort of asymmetry is obtained

by fixing v2L, v2H and setting v1L =
1
γ v2L, v1H = 1

γ v2H . The comparison between the SPA and

the FPA yields results which are different from those in Kirkegaard (2011a), but are similar to the

results obtained for a shift. Precisely, (11) reveals that RS > RF if γ is not much larger than 1

(i.e., for a small rescaling), whereas a large γ makes (3) satisfied and thus RF > RS.

4.2.4 The distribution of bids in the FPA and the bidders’ preferences

For i = 1, 2, let Gi denote the ex ante c.d.f. of the equilibrium bids submitted by bidder i in the

FPA, that is Gi(b) = λGiL(b)+(1−λ)GiH(b). Using Proposition 1 we can compare the equilibrium

bid distributions of bidder 1 and 2 in the FPA, and we find that G2 first order stochastically

dominates G1 when v2H > v1H ; the opposite result obtains if v1H > v2H . Notice that when

v2H > v1H , the distribution of v2 first order stochastically dominates the distribution of v1 and

the result that G2 first order stochastically dominates G1 agrees with Corollary 1 in Kirkegaard

(2009), for a setting with continuous distributions. On the other hand, when v2H < v1H there

is no first order stochastic dominance between the distribution of v1 and v2, but second order

stochastic dominance applies if v1H ≤ v2H +
λ
1−λ(v2L − v1L), that is if the expected value of v2 is

weakly larger than the expected value of v1. Under second order stochastic dominance between the

valuations distributions, Proposition 5 in Kirkegaard (2009) shows that the bid distributions must

cross, whereas we find that G1 first order stochastically dominates G2.

Proposition 1 also allows us to compare the bidders’ payoffs in the FPA with their payoffs in

the SPA: it turns out that bidder 1 weakly prefers the FPA, whereas bidder 2 weakly prefers the

SPA. These results largely agree with the results in Propositions 3.3(ii) and 3.6 in Maskin and Riley

(2000a).

4.2.5 Relationship with Kirkegaard (2011b)

Proposition 4(i) reveals that RS > RF for a broad set of deviations from the benchmark symmetric

setting, provided that λ1 = λ2. On the other hand, a frequent result in the literature on asymmetric

auctions is that RF > RS. Since the most general theoretical results are obtained in Kirkegaard

(2011b), we explain why his analysis does not apply to our setting.

15



Kirkegaard (2011b) considers a two-bidder environment with supports [β1, α1] for v1 and [β2, α2]

for v2 such that β1 ≤ β2 and α1 < α2. The c.d.f.s F1, F2 have no atoms and have continuous and

positive densities f1, f2 in the respective supports; moreover, 1 is ex ante weaker than 2 in the sense

that F2 first order stochastically dominates F1. A crucial ingredient for the result is r(v), which

is defined as F−12 [F1(v)] for each v ∈ [β1, α1], that is r(v) satisfies Pr{v2 ≤ r(v)} = Pr{v1 ≤ v}
and r(v) ≥ v as F2 first order stochastically dominates F1. The main result in Kirkegaard (2011b),

Theorem 1, establishes that RF > RS if28

f2(v)

F2(v)
≥ f1(v)

F1(v)
for any v ∈ [β1, α1] ∩ [β2, α2]; (13)

f1(v) ≥ f2(x) for any x ∈ [v, r(v)] and any v ∈ [β1, α1]. (14)

This theorem results from a clever application of the mechanism design techniques introduced

by Myerson (1981), and precisely relies on the following argument. The expected revenue in either

auction is given by the expected virtual valuation of the winning bidder minus the rents of the

lowest types β1 and β2 of the two bidders. In the SPA bidder 1 wins if and only if v1 > v2.

However, (13) and (14) imply that the virtual valuation of 1 is larger than the virtual valuation of

2 when valuations are equal, which suggests that it is profitable to have 1 winning the auction if

v1 = v2, or if v1 is slightly larger than v2. In fact, (13) implies that in the FPA bidder 1 bids higher

than 2 for equal valuations. Thus 1 wins when v2 < v1, and also when v2 < kF (v1) for a certain

function kF such that v < kF (v) ≤ r(v) (the latter inequality means that the ex ante equilibrium

bid distribution of 2 first order stochastically dominates the ex ante bid distribution of 1). This

suggests that the FPA is more profitable than the SPA, but in fact in some states of the world

bidder 1 may win even though his virtual valuation is smaller than the virtual valuation of 2. As

a consequence, it is not obvious that the FPA dominates the SPA, but Kirkegaard (2011b) shows

that if β1 = β2, then (14) implies that the expected virtual valuation of the winner, conditional on

v1, is larger in the FPA than in the SPA for each v1. If instead β1 < β2, then the above result may

not hold, but the FPA extracts from type β2 of bidder 2 a higher rent than the SPA, which allows

to prove that RF > RS.

The assumptions in Kirkegaard (2011b) obviously rule out our discrete setting, but given the

c.d.f.s

F̃1(v1) =

⎧⎪⎨⎪⎩
0 if v1 < v1L

λ if v1L ≤ v1 < v1H

1 if v1H ≤ v1

, F̃2(v2) =

⎧⎪⎨⎪⎩
0 if v2 < v2L

λ if v2L ≤ v2 < v2H

1 if v2H ≤ v2

28Condition (13) is a standard condition of dominance in terms of reverse hazard rates. On the other hand, (14)

is innovative and Kirkegaard (2011a) proves that it implies that r(v)− v is increasing, which means that F2 is more

disperse than F1 according to a specific order of dispersion between c.d.f. Moreover, Kirkegaard (2011a) gives an

economic interpretation to (14) linked to the relative steepness of the demand function of bidder 1 with respect to

the demand function of bidder 2.
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for v1, v2 in our model, we can approximate F̃1, F̃2 using atomless c.d.f.29 Precisely, consider two

sequences of atomless c.d.f. {Fn
1 , F

n
2 }+∞n=1, with continuous and positive densities fn1 , fn2 for each n,

which converges weakly to F̃1, F̃2. We prove in Section 10 that for any large n, (13) and/or (14)

are violated by Fn
1 , F

n
2 .

4.3 The general case

In this subsection we remove the assumption λ1 = λ2. Our results for this case, described by

Proposition 5 below, are less clear cut than when λ1 = λ2, but however they offer some insights on

which format is likely to perform better in different settings.

Proposition 5 (i) For any λ1 and λ2, suppose that v1H = v2H . Then RS > RF holds as long as

v1L < v2L and/or λ1 6= λ2.

(ii) The case of λ2 ≥ λ1.

(iia) RS > RF in region B if v2L is close to v1L; RS > RF in the whole region B if λ2 ≥ max{12 , λ1}.
(iib) The difference RF −RS is increasing with respect to v2L in region C.

(iii) The case of λ1 ≥ λ2.

(iiia) RS > RF in region A.

(iiib) Suppose that λ1 ≥ λ2(1 + ln
1
λ2
), and consider regions B and C. If v2L ≤ v1H or if v2L

is not too larger than v1H , then there exists v∗2H (and v∗2H > v1H) such that RS > RF when

v2H ∈ (v2L, v∗2H), but RF > RS when v2H > v∗2H . If conversely v2L is much larger than v1H , then

RF > RS for any v2H > v2L.

Proposition 5(i) is in a sense quite intuitive, since we know that RS > RF when v1H = v2H if

(i) v1L < v2L and λ1 = λ2 [from Proposition 4(i), condition (10)], or (ii) v1L = v2L and λ1 6= λ2

(from Maskin and Riley, 1983). Proposition 5(i) essentially verifies that RS > RF still holds if both

inequalities v1L < v2L and λ1 6= λ2 hold.

A simple way to see why RS > RF when v1H = v2H consists in arguing as in Subsection

4.2.3, and proving that the bidders’ rents are larger in the FPA than in the SPA. Precisely, when

v1H = v2H condition (3) is violated and (7) reduces to λ1 ≥ λ2; therefore Proposition 1(iii) applies

if λ1 ≥ λ2, and Proposition 1(ii) applies if λ1 < λ2. In the proof to Proposition 5(i) we show that

bidder 1 (bidder 2) strictly (weakly) prefers the FPA to the SPA since (i) 1H earns zero in the SPA

when facing 2H , earns v1H − v2L against 2L; (ii) 1H can beat 2L in the FPA by bidding v1L or b̂

(depending on whether λ1 ≥ λ2 or λ1 < λ2), and both v1L and b̂ are smaller than v2L. Likewise,

the payoff of bidder 2 in the SPA is zero against 1H , is v2 − v1L against 1L. The FPA is certainly

not worse for 2 as he can beat 1L by bidding v1L.30

29Lebrun (2002) establishes that the equilibrium correspondence is upper hemicontinuous with respect to the

valuation distributions, for the weak topology. Given that all BNE are outcome-equivalent at each given information

structure, it follows that the equilibrium correspondence is in fact continuous. Therefore also RF is continuous, as it

is the expectation of a continuous function of bids (the maximum).
30Here the bidders have the same preferences between the FPA and the SPA, whereas under the assumptions on

Maskin and Riley (2000a) that is never the case.
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Proposition 5(ii) considers the case of λ2 ≥ λ1 and generalizes the results in Proposition 4(i)

linked to conditions (11) and (12). Precisely, when λ2 > λ1 and v1L = v2L we have thatRF decreases

if v2H increases above v1H , as when λ2 = λ1; this makes RF smaller than RS for v2H > v1H and

v2L close to v1L. Regarding the inequality RS > RF in the whole region B if λ2 ≥ max{12 , λ1},
the intuition is that for a large λ2, v2 is almost commonly known to be equal to v2L such that

v1L < v2L ≤ v1H . In such a case, we know from subsection 4.2.2 that RS > RF (see footnote 24),

a result suggested also by Example 3 in Maskin and Riley (2000a). Hence, in regions B and C,

a figure qualitatively similar to figure 1 applies for the case of λ2 ≥ max{12 , λ1},31 and RF > RS

requires v2L larger than v1H .

On the other hand, the result in Proposition 4(i) related to condition (10) does not extend to

the case of λ2 > λ1 because then RS > RF fails to hold for some profile of valuations in region

A. Precisely, consider (v1L, v1H , v2L, v2H) in region A with v2L very close to v2H , and suppose that

(7) is satisfied with equality [(7) does not depend on v2L]. In this case the valuation of bidder 2 is

almost common knowledge, and then Proposition 4(i) [condition (10)] applies even though λ2 6= λ1,

since v2L close to v2H makes the precise value of λ2 almost irrelevant; thus RS > RF . If now we

consider a reduction of v2L from about v2H to about v1L, then RF is unaffected since (7) is still

satisfied and the equilibrium bidding in the FPA does not depend on v2L. On the other hand,

the reduction in v2L reduces RS because the revenue in the SPA is equal to v2L with probability

(1− λ1)λ2 in region A. In particular, RS is reduced considerably when λ2 is large and λ1 is small,

consistently with λ2 > λ1. In such a case RS < RF if v2L is close to v1L.

Conversely, Proposition 5(iiia) extends the result of Proposition 4(i) [condition (10)] for region

A to the case of λ1 ≥ λ2. The reason is that a reduction of λ2 below λ1 does not affect RF , whereas

it increases RS [see (8) and (1)].

Proposition 5(iiib) considers regions B and C and shows that when λ1 is large with respect to λ2,

RF > RS if and only if v2H is sufficiently large. In Figure 2 we fix λ1, λ2 such that λ1 ≥ λ2(1+ln
1
λ2
),

we fix v1L, v1H , and we partition the space (v2L, v2H) in two regions S and F such that RS > RF

if (v2L, v2H) ∈ S, and RF ≥ RS if (v2L, v2H) ∈ F — obviously, the feasible values of (v2L, v2H) are

above the line v2H = v2L. In particular, F(i) and F(ii) are the sets in which (3) and (4) are satisfied,

respectively. The remaining set S(iii) ∪ F(iii) is such that (7) is satisfied. The boundary between S

and F is obtained numerically.

insert Figure 2 here

Caption Figure 2: Comparison between the FPA and the SPA when λ1 ≥ λ2(1 + ln
1
λ2
). In the

dark grey region S = S(iii) the SPA dominates the FPA in terms of the seller’s revenue. In the light

grey region F = F(i)∪F(ii)∪F(iii) the FPA is superior. Proposition 1(i) applies in the north-east set
31 In fact, when λ2 ≥ max{ 1

2
, λ1} we prove in Section 11 that RS > RF if v1L < v2L < v2H and v2L ≤ v1H +

λ1(3λ2−λ22−λ1λ2−1)
λ2(1−λ1)(3−λ1−λ2) (v1H − v1L), with 3λ2 − λ22 − λ1λ2 − 1 > 0 since λ2 ≥ max{ 1

2
, λ1}. When λ1 = λ2 = λ, the

inequality v2L ≤ v1H +
λ1(3λ2−λ22−λ1λ2−1)
λ2(1−λ1)(3−λ1−λ2) (v1H − v1L) boils down to v2L ≤ v1H +

2λ−1
3−2λ (v1H − v1L) as in (12).
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F(i), 1(ii) in the set F(ii) in the middle and north-west, and 1(iii) in the south-west set F(iii)∪S(iii).

Remarkably, this result is the opposite of the result obtained when λ2 is large with respect to

λ1, as in such a case RS > RF in the whole region B. In order to understand the source of this

difference, suppose v2H = v1H ; then we know that RS > RF from Proposition 5(i). For a large

λ1, inequality (7) is satisfied and thus Proposition 1(iii) applies for the FPA, as we explained in

Subsection 3.2.2. In this setting, increasing v2H makes both types 1H and 2H more aggressive,

which increases RF . However, an increase in v2H has no effect on RS and RF > RS holds if v2H is

sufficiently large such that (7) is violated.32 Conversely, if λ2 is large we find that an increase in

v2H above v1H may increase or decrease RF , depending on the other parameter values, but however

RS > RF since v2 is almost common knowledge for a large λ2, as mentioned above.

5 A setting with three types for each bidder

In this section we consider a setting in which the support for each bidder’s valuation is a three-

point set. Precisely, the set {v1L, v1M , v1H} is the support for v1 and the set {v2L, v2M , v2H} is
the support for v2, with viL < viM < viH and λL ≡ Pr{vi = viL} > 0, λM ≡ Pr{vi = viM} > 0,

λH ≡ Pr{vi = viH} > 0 for i = 1, 2. We still use RF (RS) to denote the expected revenue under

the FPA (under the SPA). As usual, RS is the expectation of min{v1, v2}.
In this environment we do not characterize a BNE for the FPA for all parameters values, but

nevertheless we can prove that some of the results described in Subsection 4.2 for binary supports

apply also when the supports for the bidders’ valuations are three-point sets.

Proposition 6 In the setting described in this section, consider the FPA with the Vickrey tie-

breaking rule.

(i) If min{λHv2L + (λL + λM)v1M , (λM + λH)v2L + λLv1L} ≥ v1H , then there exists a BNE in

the FPA in which each type of bidder 1 bids the own valuation and each type of bidder 2 bids v1H .

In this case RF = v1H is larger than RS = λLv1L + λMv1M + λHv1H .

(ii) Suppose that v1L = v2L, v1M = v2M , and for a given value of v2H larger than v2M , let I be

a small interval centered in v2H , that is I = (v2H−ε, v2H+ε) for a small ε > 0. Then RF is larger

if v1H = v2H than if v1H ∈ I and v1H 6= v2H . Furthermore, RS > RF if v1H ∈ I and v1H 6= v2H .

(iii) Suppose that v2L = v1L + yα, v2M = v1M , v2H = v1H − α for an arbitrary y > 0 and a

small α > 0. Then RS > RF .

(iv) Suppose that v2j = v1j + α for j = L,M,H, for a small α > 0. Then RS > RF .

For the case in which v2L is sufficiently larger than v1H , Proposition 6(i) describes a BNE for

the FPA analogous to the BNE in Proposition 1(i). In this case RF > RS, as established by

Proposition 2 for binary supports.
32Notice that RF > RS requires v2H sufficiently larger than v1H , and jointly with v1L ≤ v2L and λ1 sufficiently

larger than λ2, this implies that the distribution of v2 first order stochastically dominates the distribution of v1
strongly enough.
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Proposition 6(ii) is analogous to Lemma 1 and to Proposition 4 [condition (9)], since it estab-

lishes that starting from a symmetric setting, a small increase in the valuation of type 1H reduces

RF and thus makes RF smaller than RS . However, Proposition 6(ii) applies only for v1H close to

v2H . The reason is that the effect of an increase of v1H above v2H is not immediate (whereas its

effect is immediate for binary supports) since both types 1M and 1H become more aggressive; 2L
becomes less aggressive; the mixed strategy of type 2H after the increase in v1H is not comparable

with his mixed strategy when v1H = v2H in the sense of first order stochastic dominance. It is

not straightforward to evaluate the net effect of these modified bidding strategies, thus Proposition

6(ii) restricts to the case of a small difference v1H −v2H , proving in particular that a small increase
in v1H above v2H reduces RF . Notice however that this implies a result analogous to Proposition 3:

if we start from a symmetric setting such that v1L = v2L, v1M = v2M , v1H = v2H , then a suitable

increase of all valuations reduces RF .33

Proposition 6(iii) is analogous to Proposition 4 [condition (10)], as it shows that RS > RF in a

case such that v2 is slightly less variable than v1 (with v1M = v2M).

Finally, Proposition 6(iv) proves that RS > RF for a small distribution shift, whereas a large

shift makes the inequality in Proposition 6(i) satisfied, which implies RF > RS . Hence these results

mirror exactly the results described in Subsection 4.2.3 on distribution shifts for binary supports.

6 Proof of Proposition 1

6.1 Proof of Proposition 1 for the case of v1L < v2L

For i = 1, 2 and j = L,H, let Gij denote the c.d.f. for the mixed strategy of type j of bidder i,

with bij = inf{b : Gij(b) > 0} and b̄ij = sup{b : Gij(b) < 1}. Recall that in a mixed-strategy BNE
any bid made by type ij must generate the same expected payoff, that is the equilibrium payoff of

type ij , which we denote by ueij . We use uij(b) and pij(b) to denote the payoff of type ij and his

probability to win — respectively — as a function of his bid b, given the strategies of the two types

of the other bidder.

This proof is organized in several steps, and throughout the proof ε denotes a number which is

positive and close to zero. We start by recording a feature of any BNE.

Lemma 2 If a profile of strategies has the property that there is a bid b0 such that with a positive

probability type 1j and type 2k tie bidding b0 and min{v1j , v2k} > b0, then the profile of strategies is

not a BNE.

Proof. By bidding b0, at least one of these types loses the auction with positive probability; for

instance type 1j . Since b0 < v1j , type 1j is better off bidding b0+ ε rather than b0 as in this way his

33An instance in which this result is obtained is such that v1L = v2L = 100, v1M = v2M = 200, v1H = v2H = 300

and λL = λM = λH = 1
3
; then RF = 1400

9
= 155.5̄. However, if v1L = v2L = 100.1, v1M = v2M = 200.1, v1H = 310

and v2H = 300.1, then RF ' 155.475 < 155.5̄.
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probability of winning increases discretely, whereas his payment in case of victory increases only

slightly.

6.1.1 Step 1: When v1L < v2L, any BNE is such that (i) b̄1L ≤ b1H , b̄2L ≤ b2H ; (ii) either
b1L = b2L = v1L = b̄1L or b1L < b2L; (iii) u

e
1L = 0, u

e
2L > 0, v1L ≤ b2L; (iv) b̄1H = b̄2H

(i) The monotonicity properties b̄1L ≤ b1H and b̄2L ≤ b2H follow from Proposition 1 in Maskin and

Riley (2000b).

(ii) In order to prove that b1L ≤ b2L, suppose in view of a contradiction that b2L < b1L. Since

2L bids in the interval [b2L, b1L) with positive probability, it follows that u
e
2L = 0. However, since

b1L ≤ v1L < v2L we find that p2L(b) > 0 and u2L(b) > 0 if 2L bids b = b1L + ε: contradiction.

We now show that if b1L = b2L ≡ b, then b = v1L, and as a consequence we obtain b̄1L = v1L.

Suppose b < v1L. We distinguish several cases depending on whether G1L and/or G2L puts an

atom on b; in each case we obtain a contradiction.

• G1L(b) = 0 [G2L(b) = 0 or G2L(b) > 0 does not matter]. In this case ue2L = 0 as p2L(b) is

about zero for b close to b (as G1L is right continuous). However, since b < v1L < v2L we find

that p2L(b) > 0 and u2L(b) > 0 if 2L bids b = b+ ε.

• G1L(b) > 0 and G2L(b) > 0. This case is ruled out by Lemma 2.

• G1L(b) > 0 and G2L(b) = 0. In this case ue1L = 0 as p1L(b) = 0. However, since b < v1L we

find that p1L(b) > 0 and u1L(b) > 0 if 1L bids b = b+ ε < v1L.

(iii) We notice that ue1L = 0 both if b1L = b2L = b̄1L = v1L and if b1L < b2L. Hence v1L ≤ b2L,

since if b2L < v1L then any bid in (b2L, v1L) yields a positive payoff to 1L. Finally, p2L(b) ≥ λ1 for

any b ≥ v1L + ε, thus ue2L ≥ λ1(v2L − v1L − ε) > 0 for each small ε > 0.

(iv) If b̄1H > b̄2H , then it is profitable for 1H to move some probability from (b̄1H − ε, b̄1H ] to

(b̄2H , b̄2H + ε), since the probability of winning remains 1 but his payment in case of victory is

smaller. If b̄1H < b̄2H , a symmetric argument applies to 2H .

6.1.2 Step 2: When v1L < v2L, there exists a BNE such that b̄1H ≤ b2L if and only if
(3) is satisfied; any such BNE is outcome-equivalent to the BNE in Proposition
1(i)

We start by proving that b1L < b2L. Suppose in view of a contradiction that b1L = b2L. Then Step

1(i-ii) imply b1L = b̄1L = b1H = b̄1H = b2L = v1L. It is impossible that G2L(v1L) > 0, because in

such a case 1H and 2L would tie with positive probability at b = v1L, and then Lemma 2 would

apply. As a consequence, p1H(v1L) = 0 and ue1H = 0. However, if 1H plays b = v1L + ε then

p1H(b) > 0 and u1H(b) > 0 since v1L < v1H : contradiction.
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From the inequality b̄1H ≤ b2L it follows that 2L wins with probability one;
34 thus ue1H = 0.

Moreover, (i) b̄1H = b̄2H by Step 1(iv) and thus b̄1H = b2L = b̄2L = b2H = b̄2H ; (ii) v1H ≤ b2L
otherwise any bid in (b2L, v1H) yields a positive payoff to 1H . Hence, u

e
2L = v2L − b2L and ue2H =

v2H − b2L.

We need to examine the incentives of bidder 2 to bid below b2L, and in particular we notice

that bidding b = b̄1L + ε yields bidder 2 a probability of winning not smaller than λ1. Thus the

inequalities

λ1(v2L − b̄1L − ε) ≤ v2L − b2L and λ1(v2H − b̄1L − ε) ≤ v2H − b2L

need to hold for any ε > 0, and since v2H > v2L it is simple to see that the first inequality is

more restrictive than the second one. Given b̄1L ≤ v1L and b2L ≥ v1H , the first inequality is most

likely to be satisfied when b̄1L = v1L and b2L = v1H , and then it reduces to (3). This inequality is

therefore a necessary condition for the existence of a BNE such that b̄1H ≤ b2L.

Bids above v1H are obviously suboptimal for bidder 2 because u2L(b) = v2L − b < v2L − v1H

if b > v1H . On the other hand, for bids smaller than v1H the strategies of 1L and 1H need to

be such that no b < v1H is a profitable deviation for type 2L.35 For instance, we verify that this

condition is satisfied if G1H is the uniform distribution over [αv1H , v1H ], with α < 1 and close

to 1; recall that 1L bids v1L with certainty. Then p2L(b) = 0, u2L(b) = 0 for b < v1L, whereas

p2L(v1L) = λ1 (recall the Vickrey tie-breaking rule and v2L > v1L), u2L(v1L) = λ1(v2L − v1L),

but we know from (3) that this payoff is smaller than v2L − v1H , the payoff of 2L if he bids v1H .

For b ∈ (v1L, αv1H) we find that u2L(b) = λ1(v2L − b) is decreasing. Finally, for b ∈ [αv1H , v1H ],
u2L(b) = (v2L−b)[λ1+(1−λ1) b−αv1H

v1H−αv1H ] and is increasing for α > 1− (1−λ)(v2L−v1H)
v1H

, which implies

that b = v1H is a best reply for 2L.

6.1.3 Step 3: When v1L < v2L, there exists no BNE such that b2L < b̄1H ≤ b̄2L

If b2L < b̄1H ≤ b̄2L, then b2L < b̄1H = b̄2L = b2H = b̄2H ≡ b∗ by Step 1(iv). This implies b∗ ≤ v1H ,

and thus b2L < b∗ implies ue1H > 0, and in turn b∗ < v1H . Since 2H bids b∗ with certainty, it is

profitable for 1H to bid b∗+ ε rather than b∗− ε, as in this way his probability of victory increases

by at least 1− λ2 > 0 and his payment in case of victory increases only slightly.

6.1.4 Step 4: When v1L < v2L, there exists a BNE such that b2L < b̄2L < b̄1H if and
only if (4) is satisfied; any such BNE is outcome-equivalent to the BNE in
Proposition 1(ii)

The inequality b2L < b̄1H implies ue1H > 0 because b̄1H ≤ v1H and p1H(b) > 0 for b ∈ (b2L, b̄1H).
Next lemma provides a list of features of any BNE such that b2L < b̄1H .
34 In particular, if b̄1H = b2L and 1H and 2L tie with positive probability at b2L, then 2L needs to win the tie-break

with probability 1, otherwise it is profitable for him to bid b2L + ε rather than b2L (b2L < v2L since ue2L > 0).
35 If this property is satisfied, then no deviation is profitable for 2H since (v2L − b)p2L(b) ≤ v2L − v1H implies

(v2H − b)p2H(b) ≤ v2H − v1H , as p2L(b) = p2H(b) for any b
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Lemma 3 In any BNE such that b2L < b̄1H the following equalities hold: b̄1L = b1H = b2L = v1L,

b̄2L = b2H ; moreover, G2L(b2L) > 0.

Proof. The proof is split in two claims.
Claim 1 b̄1L = b1H .

In view of a contradiction, assume that b̄1L < b1H . If G1H(b1H) > 0 and G2L(b1H) > 0,36 then

Lemma 2 applies since ue1H > 0 and ue2L > 0 imply v1H > b1H and v2L > b1H . If G1H(b1H) > 0

and 2 puts no atom at b1H , then 2 bids with zero probability in (b̄1L + ε, b1H ] and 1H can increase

his payoff by moving the atom from b1H to any point in (b̄1L + ε, b1H ]. If G1H(b1H) = 0, then 2

bids with zero probability in (b̄1L + ε, b1H ] (in particular, 2 puts no atom in b1H) and then 1H can

increase his payoff by moving some probability from [b1H , b1H + ε) to (b̄1L + ε, b̄1L + 2ε).

Claim 2 b1H = b2L = v1L, G2L(v1L) > 0 and b̄2L = b2H .

If b1H < b2L, then 1H bids in [b1H , b2L) with positive probability and thus u
e
1H = 0: contradiction.

Thus b2L ≤ b1H and since b̄1L ≤ v1L, v1L ≤ b2L [by Step 1(iii)] and b̄1L = b1H (by Claim 1), we

infer that b̄1L = b2L = b1H = v1L. Moreover, given b1H = b2L, if G2L(b2L) = 0 then ue1H = 0; thus

G2L(b2L) > 0. The equality b̄2L = b2H is proved along the same lines followed in Claim 1 to prove

b̄1L = b1H .

Lemma 4 In any BNE such that b2L < b̄2L < b̄1H , the mixed strategies of 1H ,2L,2H are given by

(5)-(6), and they constitute a BNE if and only if (4) is satisfied.

Proof. In the following of this proof we use b̂ and b̄, respectively, instead of b̄2L and of b̄2H = b̄1H .

Given that v1L < b̂, types 1H , 2L, 2H are all employing mixed strategies and we can argue like in

the proof of Claim 1 in Lemma 2 to show that G1H , G2L, G2H are strictly increasing and continuous

in the intervals [v1L, b̄], [v1L, b̂], [b̂, b̄], respectively. This implies that the following conditions must

be satisfied.

Indifference condition of type 1H :

(v1H − b)[λ2G2L(b) + (1− λ2)G2H(b)] = v1H − b̄ for any b ∈ (v1L, b̄] (15)

Indifference condition of type 2L:

(v2L − b)[λ1 + (1− λ1)G1H(b)] = λ1(v2L − v1L) for any b ∈ [v1L, b̂] (16)

Indifference condition of type 2H :

(v2H − b)[λ1 + (1− λ1)G1H(b)] = v2H − b̄ for any b ∈ [b̂, b̄] (17)

From (16) and (17) we obtain G1H in (5). For b ∈ (v1L, b̂], (15) reduces to (v1H − b)λ2G2L(b) =

v1H − b̄ and thus G2L satisfies (6). For b ∈ [b̂, b̄], (15) reduces to (v1H − b)[λ2 + (1− λ2)G2H(b)] =

v1H − b̄ and then G2H satisfies (6).

36 If we consider type 2H instead of 2L, the same the argument applies.
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Since G2L(b̂) = 1, we deduce that b̄ = λ2b̂+(1−λ2)v1H , and since G1H needs to be continuous

at b = b̂ we infer that b̂ solves (2); here we use Z(b) to denote the left hand side of (2). The

strategies in Proposition 1(ii) require that b̂ satisfies v1L < b̂ < min{v2L, v1H}, and since Z(v2L) =
−λ1 (v2L − v1L) (v2H − v2L) < 0 we infer that b̂ is the smaller solution of (2); moreover, Z(v1L) =

(1 − λ2) (v2L − v1L)
³
(λ1−λ2)v1L+(1−λ1)v2H

1−λ2 − v1H

´
and thus (λ1−λ2)v1L+(1−λ1)v2H

1−λ2 > v1H needs to

hold. The inequality b̂ < v1H is obviously satisfied if v2L ≤ v1H , while if v1H < v2L then it

is equivalent to Z(v1H) < 0. Since Z(v1H) = −[v1H − λ1v1L − (1 − λ1)v2L] (v2H − v1H) and

v1H < v2L < v2H , we deduce that the converse of (3) needs to hold. Thus (4) is a necessary

condition for the existence of a BNE such that b2L < b̄2L < b̄1H .

Now we verify that for each type of each bidder the strategy specified by Proposition 1(ii) is a

best reply given the strategies of the two types of the other bidder. Notice that p1H(b̄) = p2H(b̄) = 1,

thus we do not need to consider bids above b̄. The same remark applies to the BNE described by

Proposition 1(iii).

Type 1L. The strategies of types 2L and 2H are such that each type of bidder 2 bids at least v1L
with probability one. Therefore the payoff of 1L is zero if he bids v1L as specified by Proposition

1, and it is impossible for him to obtain a positive payoff.

Type 1H . We know from (15) that the payoff of 1H is v1H − b̄ > 0 for any b ∈ (v1L, b̄]. If b < v1L,

then p1H(b) = 0 and u1H(b) = 0. If b = v1L, then 1H loses against 2H and loses also against 2L
unless 2L bids v1L, in which case 1H ties with 2L — an event with probability G2L(v1L). Consider

the most favorable case for 1H , which means that he wins the tie-break against 2L with probability

one (this occurs if v2L < v1H): his expected payoff from bidding v1L is then (v1H−v1L)λ2G2L(v1L),
which turns out to be equal to v1H − b̄.

Type 2L. We know from (16) that the payoff of 2L is λ1(v2L − v1L) > 0 for any b ∈ [v1L, b̂].
For bids smaller than v1L, the payoff of 2L is zero as p2L(b) = 0 if b < v1L. If b ∈ [b̂, b̄], then
u2L(b) = (v2L − b)[λ1 + (1 − λ1)G1H(b)] = (v2L − b)v2H−b̄v2H−b which is decreasing in b, and therefore

u2L(b̂) > u2L(b) for any b ∈ (b̂, b̄].
Type 2H . We know from (17) that the payoff of 2H is v2H − b̄ > 0 for any b ∈ [b̂, b̄]. For

bids smaller than v1L, the payoff of 2H is zero as p2H(b) = 0 if b < v1L. If b ∈ [v1L, b̂], then
p2H(b) = λ1 + (1 − λ1)G1H(b) = λ1

v2L−v1L
v2L−b and u2H(b) = (v2H − b)λ1

v2L−v1L
v2L−b , which is increasing

in b and therefore u2H(b) < u2H(b̂) for any b ∈ [v1L, b̂).

6.1.5 Step 5: When v1L < v2L, there exists a BNE such that b2L = b̄2L < b̄1H if and
only if (7) is satisfied; any such BNE is outcome-equivalent to the BNE in
Proposition 1(iii)

In this case Lemma 3 (in the proof of Step 4) applies, thus we infer that b̄1L = b1H = b2L = b̄2L =

b2H = v1L; this means that 2L plays a pure strategy and bids v1L. Conversely, types 1H and 2H
employ mixed strategies and thus the following indifference conditions need to hold, in which we
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still use b̄ instead of b̄2H = b̄1H . For type 1H :

(v1H − b)[λ2 + (1− λ2)G2H(b)] = v1H − b̄ for any b ∈ (v1L, b̄] (18)

For type 2H :

(v2H − b)[λ1 + (1− λ1)G1H(b)] = v2H − b̄ for any b ∈ (v1L, b̄] (19)

Notice that G1H(v1L) = 0 since if G1H(v1L) > 0, then 1H ties with 2L with positive probability

by bidding v1L, and thus Lemma 2 applies. From G1H(v1L) = 0 and (19) we obtain b̄ = λ1v1L +

(1− λ1)v2H , and then (18)-(19) yield G1H , G2H in (8). The inequality (7) needs to hold since it is

equivalent to G2H(v1L) ≥ 0.
Now we verify that for each type of each bidder the strategy specified by Proposition 1(iii) is a

best reply given the strategies of the two types of the other bidder.

Type 1L. The same argument given in the proof of Lemma 4 in Step 4 applies.
Type 1H . We know from (18) that the payoff of 1H is v1H − b̄ > 0 for any b ∈ (v1L, b̄],37 and
b < v1L implies p1H(b) = 0, u1H(b) = 0. If b = v1L, then 1H ties with type 2L and loses against 2H ,

unless also 2H bids v1L — an event with probability G2H(v1L). Consider the most favorable case for

1H , which means that he wins the tie-break against each type of bidder 2 with probability one (this

occurs if v2H < v1H): his expected payoff from bidding v1L is then (v1H−v1L)[λ2+(1−λ2)G2H(v1L)]
which turns out to be equal to v1H − b̄.

Type 2L. The payoff of 2L is λ1(v2L − v1L). For bids smaller than v1L we can argue exactly like

in the proof of Lemma 4 in Step 4. If b ∈ [v1L, b̄], then p2L(b) = λ1
v2H−v1L
v2H−b and thus u2L(b) =

(v2L − b)λ1
v2H−v1L
v2H−b is decreasing in b.

Type 2H . The payoff of 2H is v2H − b̄ > 0 for any b ∈ [v1L, b̄]. For bids smaller than v1L we can

argue exactly like in the proof of Lemma 4 in Step 4.

6.2 Proof of Proposition 1 for the case of v1L = v2L

6.2.1 Step 1: When v1L = v2L = vL, any BNE is such that b1L = b2L = b̄1L = b̄2L = vL

We start by proving that b1L = b2L. In view of a contradiction, suppose that b2L < b1L. Since 2L
bids in [b2L, b1L) with positive probability, it follows that u

e
2L = 0. Then vL ≤ b1L, since b1L < vL

implies that p2L(b) > 0 and u2L(b) > 0 for any b ∈ (b1L, vL). Moreover, vL ≤ b1L implies u
e
1L = 0,

but p1L(b) > 0 and u1L(b) > 0 for any b ∈ (b2L, b1L): contradiction. Therefore the inequality
b2L < b1L cannot hold in equilibrium, and a similar argument applies to rule out b1L < b2L.

Given that b1L = b2L ≡ b, we prove that b = vL. In view of a contradiction, suppose that b < vL.

In case that G1L(b) > 0 and G2L(b) > 0, Lemma 2 applies; thus G1L(b) = 0 and/or G2L(b) = 0. If

G1L(b) = 0, we find that ue2L = 0 since p2L(b) is about 0 for b close to b, but in fact 2L can make

a positive payoff by bidding in (b, vL): contradiction. The same argument applies if G2L(b) = 0.

Thus b = vL, which implies b̄1L = b̄2L = vL: hence both 1L and 2L bid vL with probability one.
37Notice that v1H − b̄ > 0 given (7).
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6.2.2 Step 2: When v1L = v2L = vL, in the unique BNE 1H,2H play the mixed strategies
described by Proposition 1(iii) if (7) holds; if (7) is violated, then 1H,2H play
the mixed strategies described by (5) and (6) with b̂ = vL

As in the proof of Proposition 1(ii) (Lemma 3 in Step 4) we can prove that b̄1L = b1H(= vL) and

b̄2L = b2H(= vL). Using again b̄ instead of b̄1H , b̄2H we infer that G1H , G2H need to satisfy

(v1H − b)[λ2 + (1− λ2)G2H(b)] = v1H − b̄ for any b ∈ [vL, b̄] (20)

and

(v2H − b)[λ1 + (1− λ1)G1H(b)] = v2H − b̄ for any b ∈ [vL, b̄] (21)

From (20)-(21) we obtain G1H(vL) = 1
1−λ1 (

v2H−b̄
v2H−vL−λ1) and G2H(vL) =

1
1−λ2 (

v1H−b̄
v1H−vL−λ2). Lemma

2 implies that G1H(vL) > 0 and G2H(vL) > 0 cannot hold. Thus we consider the other cases.

If G1H(vL) > 0 = G2H(vL) we obtain b̄ = λ2vL+ (1− λ2)v1H and G1H(vL) > 0 is equivalent to

the converse of (7); from (20)-(21) we obtain G1H , G2H as in footnote 14.38 Now we prove that no

profitable deviation exists for any type. The payoff of 1L (2L) is zero and he needs to bid above vL
in order to win. For 1H , we know from (20) that his payoff is v1H − b̄ for any b ∈ [vL, b̄] and b < vL

yields u1H(b) = 0. A similar argument applies to 2H .

In case that G2H(vL) ≥ 0 = G1H(vL) we obtain b̄ = λ1vL + (1 − λ1)v2H , and G2H(v1L) ≥ 0
is equivalent to (7); from (20)-(21) we obtain G1H ,G2H as in (8). The proof that no profitable

deviation exists for any type is exactly as when (7) is violated.

6.3 Derivation of RF given the BNE described by Proposition 1

6.3.1 The BNE of Proposition 1(ii) when v1L < v2L

We evaluate RF as the difference between the social surplus SF generated by the FPA minus the

bidders’ rents UF : RF = SF − UF . Thus we need to derive SF and UF :

SF = λ1λ2v2L + λ1(1− λ2)v2H + (1− λ1)λ2[v2L + (v1H − v2L) Pr{1H def 2L}]
+(1− λ1)(1− λ2)[v2H + (v1H − v2H) Pr{1H def 2H}]

and

UF = (1− λ1)(v1H − λ2b̂− (1− λ2)v1H) + (1− λ2)(v2H − λ2b̂− (1− λ2)v1H) + λ2λ1(v2L − v1L)

38Step 1 and the proof of Step 2 up to this point apply for any tie-breaking rule. However, no BNE exists under

the standard tie-breaking rule if (7) is violated since (i) G1H(vL) > 0 and 1H and 2L tie with positive probability at

the bid vL; (ii) it is profitable for 1H to bid vL+ ε rather than vL, which breaks the BNE [a similar argument applies

if (7) holds with strict inequality]. On the other hand, with the Vickrey tie-breaking rule we have c1H = v1H−vL > 0

and c2L = 0; thus 1H wins (paying vL as aggregate price) in case of tie with 2L.
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in which Pr{1H def 2j}, for j = L,H, is the probability that 1H wins when he faces type 2j .

Therefore

RF = λ2(2− λ1 − λ2)b̂+ (1 + λ22 + λ1λ2 − 3λ2)v1H + λ2(1− λ1)v2L + λ2λ1v1L

+(1− λ1)λ2(v1H − v2L) Pr{1H def 2L}+ (1− λ1)(1− λ2)(v1H − v2H) Pr{1H def 2H}

Derivation of Pr{1H def 2L} For the case that v1H 6= v2L we need to evaluate

Pr{1H def 2L} =
Z b̂

v1L

G01H(b)G2L(b)db+ 1−G1H(b̂)

and using b̄ = λ2b̂+ (1− λ2)v1H in G2L we find G2L(b) =
v1H−b̂
v1H−b :

Pr{1H def 2L} =

Z b̂

v1L

λ1
1− λ1

v2L − v1L
(v2L − b)2

v1H − b̂

v1H − b
db+ 1− λ1(b̂− v1L)

(1− λ1)(v2L − b̂)

=
λ1(v2L − v1L)(v1H − b̂)

1− λ1

Z b̂

v1L

1

(v2L − b)2(v1H − b)
db+ 1− λ1(b̂− v1L)

(1− λ1)(v2L − b̂)

We exploitZ
1

(v2L − b)2(v1H − b)
db =

1

(v1H − v2L)2
ln

¯̄̄̄
v2L − b

v1H − b

¯̄̄̄
+

1

(v1H − v2L)(v2L − b)

to obtainZ b̂

v1L

1

(v2L − b)2(v1H − b)
db =

1

(v1H − v2L)2
ln
(v2L − b̂)(v1H − v1L)

(v1H − b̂)(v2L − v1L)
+

b̂− v1L

(v1H − v2L) (v2L − b̂) (v2L − v1L)

thus

Pr{1H def 2L} =
λ1(v1H − b̂)(v2L − v1L)

(1− λ1)(v1H − v2L)2
ln
(v2L − b̂)(v1H − v1L)

(v1H − b̂)(v2L − v1L)
+
(1− λ1) (v1H − v2L) + λ1(b̂− v1L)

(1− λ1) (v1H − v2L)

and

(1− λ1)λ2(v1H − v2L) Pr{1H def 2L} =
λ1λ2(v1H − b̂)(v2L − v1L)

v1H − v2L
ln
(v2L − b̂)(v1H − v1L)

(v1H − b̂)(v2L − v1L)

+λ2 (1− λ1) (v1H − v2L) + λ1λ2(b̂− v1L)

Derivation of Pr{1H def 2H} For the case that v1H 6= v2H we need to evaluate

Pr{1H def 2H} =
Z b̄

b̂
G01H(b)G2H(b)db

and using b̄ = λ2b̂+ (1− λ2)v1H in G2H we find G2H(b) =
λ2(b−b̂)

(1−λ2)(v1H−b) :

Pr{1H def 2H} =

Z b̄

b̂

v2H − b̄

(1− λ1)(v2H − b)2
λ2(b− b̂)

(1− λ2)(v1H − b)
db

=
λ2(v2H − b̄)

(1− λ1)(1− λ2)

Z b̄

b̂

b− b̂

(v1H − b)(v2H − b)2
db
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We exploitZ
b− b̂

(v1H − b)(v2H − b)2
db =

v1H − b̂

(v1H − v2H)
2 ln

¯̄̄̄
v2H − b

v1H − b

¯̄̄̄
− v2H − b̂

(v2H − v1H) (v2H − b)

to obtain Z b̄

b̂

b− b̂

(v1H − b)(v2H − b)2
db =

v1H − b̂

(v1H − v2H)
2 ln

v2H − λ2b̂− (1− λ2)v1H

λ2(v2H − b̂)

− (1− λ2) (v1H − b̂)

(v2H − v1H)
³
v2H − λ2b̂− (1− λ2)v1H

´
thus

Pr{1H def 2H} =
λ2(v2H − λ2b̂− (1− λ2)v1H)

(1− λ1)(1− λ2)

v1H − b̂

(v1H − v2H)
2 ln

v2H − λ2b̂− (1− λ2)v1H

λ2(v2H − b̂)

− λ2(v1H − b̂)

(1− λ1) (v2H − v1H)

and

(1− λ1)(1− λ2)(v1H − v2H) Pr{1H def 2H}

=
λ2(v1H − b̂)(v2H − λ2b̂− (1− λ2)v1H)

v1H − v2H
ln

v2H − λ2b̂− (1− λ2)v1H

λ2(v2H − b̂)

+(1− λ2)λ2(v1H − b̂)

Evaluation of RF

RF = λ2b̂+ (1− λ2)v1H +
λ1λ2(v1H − b̂)(v2L − v1L)

v1H − v2L
ln
(v2L − b̂)(v1H − v1L)

(v1H − b̂)(v2L − v1L)

+
λ2(v1H − b̂)(v2H − λ2b̂− (1− λ2)v1H)

v1H − v2H
ln

v2H − λ2b̂− (1− λ2)v1H

λ2(v2H − b̂)

An expression for b̂ is found by solving (2):

b̂ =
1

2λ2
(v2H + λ1v1L − (1− λ2)v1H + (λ2 − λ1)v2L −Q) (22)

with

Q =
p
((1− λ2)v1H + (λ1 − λ2) v2L − λ1v1L − v2H)2 − 4λ2(((1− λ1)v2H − (1− λ2)v1H)v2L + λ1v1Lv2H)

6.3.2 The BNE of Proposition 1(ii) when v1L = v2L (footnote 14)

SF = λ1λ2v1L + λ1(1− λ2)v2H + λ2(1− λ1)v1H + (1− λ1)(1− λ2)(v1H + (v2H − v1H) Pr{2H def 1H})
UF = (1− λ1)(v1H − λ2vL − (1− λ2)v1H) + (1− λ2)(v2H − λ2vL − (1− λ2)v1H)

Therefore

RF = λ2 (2− λ2) v1L − (1− λ1) (1− λ2) v2H + (2− λ1 − λ2) (1− λ2) v1H

+(1− λ1)(1− λ2)(v2H − v1H) Pr{2H def 1H}
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Derivation of Pr{2H def 1H} For the case that v1H 6= v2H we need to evaluate

Pr{2H def 1H} =

Z λ2v1L+(1−λ2)v1H

v1L

G02H(b)G1H(b)db

=

Z λ2v1L+(1−λ2)v1H

v1L

λ2
1− λ2

v1H − v1L
(v1H − b)2

1

1− λ1
(
v2H − λ2v1L − (1− λ2)v1H

v2H − b
− λ1)db

=
λ2(v1H − v1L)

(1− λ2)(1− λ1)

Z λ2v1L+(1−λ2)v1H

v1L

µ
v2H − λ2v1L − (1− λ2)v1H

(v2H − b)(v1H − b)2
− λ1
(v1H − b)2

¶
db

We exploitZ
1

(v2H − b)(v1H − b)2
db =

1

(v2H − v1H)2
ln

¯̄̄̄
v1H − b

v2H − b

¯̄̄̄
+

1

(v2H − v1H)(v1H − b)

to obtain Z λ2v1L+(1−λ2)v1H

v1L

v2H − λ2v1L − (1− λ2)v1H
(v2H − b)(v1H − b)2

db

=
v2H − λ2v1L − (1− λ2)v1H

(v2H − v1H)
2 ln

λ2 (v2H − v1L)

v2H − λ2v1L − (1− λ2)v1H

+
(1− λ2)(v2H − λ2v1L − (1− λ2)v1H)

λ2 (v2H − v1H) (v1H − v1L)

Moreover, Z λ2v1L+(1−λ2)v1H

v1L

λ1
(v1H − b)2

db =
λ1(1− λ2)

λ2 (v1H − v1L)

thus

Pr{2H def 1H} =
λ2(v1H − v1L)(v2H − λ2v1L − (1− λ2)v1H)

(1− λ2)(1− λ1) (v2H − v1H)
2 ln

λ2 (v2H − v1L)

v2H − λ2v1L − (1− λ2)v1H

+
v2H − λ2v1L − (1− λ2)v1H
(1− λ1) (v2H − v1H)

− λ1
1− λ1

and

(1− λ1)(1− λ2)(v2H − v1H) Pr{2H def 1H}

=
(v2H − λ2v1L − (1− λ2)v1H)λ2(v1H − v1L)

v2H − v1H
ln

λ2 (v2H − v1L)

v2H − λ2v1L − (1− λ2)v1H
+(1− λ2) ((λ2 + λ1 − 1) v1H + (1− λ1)v2H − λ2v1L)

Evaluation of RF

RF = λ2v1L + (1− λ2)v1H (23)

+
(v2H − λ2v1L − (1− λ2)v1H)λ2(v1H − v1L)

v2H − v1H
ln

λ2 (v2H − v1L)

v2H − λ2v1L − (1− λ2)v1H
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6.3.3 The BNE in Proposition 1(iii)

SF = λ1λ2v2L + λ1(1− λ2)v2H + λ2(1− λ1)v1H + (1− λ1)(1− λ2)(v2H + (v1H − v2H) Pr{1H def 2H})
UF = (1− λ1)(v1H − λ1v1L − (1− λ1)v2H) + (1− λ2)(v2H − λ1v1L − (1− λ1)v2H) + λ2λ1(v2L − v1L)

Therefore

RF = λ1(2− λ1)v1L − (1− λ1)(1− λ2)v1H + (1− λ1)(2− λ1 − λ2)v2H

+(1− λ1)(1− λ2)(v1H − v2H) Pr{1H def 2H}

Derivation of Pr{1H def 2H} For the case that v1H 6= v2H we need to evaluate

Pr{1H def 2H} =

Z λ1v1L+(1−λ1)v2H

v1L

G01H(b)G2H(b)db

=

Z λ1v1L+(1−λ1)v2H

v1L

λ1
1− λ1

v2H − v1L
(v2H − b)2

1

1− λ2
(
v1H − λ1v1L − (1− λ1)v2H

v1H − b
− λ2)db

=
λ1(v2H − v1L)

(1− λ1)(1− λ2)

Z λ1v1L+(1−λ1)v2H

v1L

(
v1H − λ1v1L − (1− λ1)v2H

(v1H − b)(v2H − b)2
− λ2
(v2H − b)2

)db

We exploitZ
1

(v1H − b)(v2H − b)2
db =

1

(v1H − v2H)2
ln

¯̄̄̄
v2H − b

v1H − b

¯̄̄̄
+

1

(v1H − v2H)(v2H − b)

to obtain Z λ1v1L+(1−λ1)v2H

v1L

v1H − λ1v1L − (1− λ1)v2H
(v2H − b)2(v1H − b)

db

=
v1H − λ1v1L − (1− λ1)v2H

(v1H − v2H)2
ln

λ1(v1H − v1L)

v1H − λ1v1L − (1− λ1)v2H

+
(1− λ1)(v1H − λ1v1L − (1− λ1)v2H)

λ1(v1H − v2H)(v2H − v1L)

Moreover, Z λ1v1L+(1−λ1)v2H

v1L

λ2
(v2H − b)2

db =
λ2(1− λ1)

λ1(v2H − v1L)

thus

Pr{1H def 2H} =
λ1(v2H − v1L)(v1H − λ1v1L − (1− λ1)v2H)

(1− λ1)(1− λ2)(v1H − v2H)2
ln

λ1(v1H − v1L)

v1H − λ1v1L − (1− λ1)v2H

+
v1H − λ1v1L − (1− λ1)v2H
(1− λ2)(v1H − v2H)

− λ2
1− λ2

and

(1− λ1)(1− λ2)(v1H − v2H) Pr{1H def 2H}

=
λ1(v2H − v1L)(v1H − λ1v1L − (1− λ1)v2H)

v1H − v2H
ln

λ1(v1H − v1L)

v1H − λ1v1L − (1− λ1)v2H
+(1− λ1)((1− λ2)v1H − λ1v1L + (λ1 + λ2 − 1)v2H)
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Evaluation of RF

RF = λ1v1L+(1−λ1)v2H+
(v1H − λ1v1L − (1− λ1)v2H)λ1(v2H − v1L)

v1H − v2H
ln

λ1 (v1H − v1L)

v1H − λ1v1L − (1− λ1)v2H

7 Proof of Lemma 1

Given λ1 = λ2 and v1L = v2L = vL, when v1H < v2H = vH Proposition 1(ii) (footnote 14)

applies and reveals that types 1L,2L bid as in the benchmark symmetric setting, whereas G1H(b) =
1
1−λ(

vH−λvL−(1−λ)v1H
vH−b − λ) and G2H(b) =

λ
1−λ

b−vL
v1H−b with support [vL, b̄], in which b̄ = λvL + (1 −

λ)v1H . It is simple to see that both G1H(b) and G2H(b) are decreasing with respect to v1H for any

b ∈ (vL, b̄), and this implies that 1H and 2H are both more aggressive, in the sense of first order

stochastic dominance, the larger is v1H in (vL, vH ].39 Given that

RF = λ2vL+λ(1−λ)

Z b̄

vL

bdG2H(b)+λ(1−λ)

Z b̄

vL

bdG1H(b)+ (1−λ)2
Z b̄

vL

bd(G1H(b)G2H(b)) (24)

we infer that RF is increasing in v1H .

When v1H > vH , Proposition 1(iii) applies and reveals that types 1L, 1H , 2L bid as in the benchmark

symmetric setting, whereas G2H(b) =
(1−λ)(v1H−vH)+λ(b−vL)

(1−λ)(v1H−b) for any b ∈ [vL, λvL+(1−λ)vH ]. Since
G2H(b) is strictly increasing in v1H for any b ∈ [vL, λvL + (1 − λ)vH), we infer that 2H is less

aggressive, in the sense of first order stochastic dominance, the larger is v1H . Using again (24),

after replacing G1H with GH and b̄ with λvL + (1− λ)vH , it follows that RF is strictly decreasing

with respect to v1H .

8 Proof of Proposition 4

8.1 Proof of Proposition 4(i)

8.1.1 The proof when (9) or (10) is satisfied

The proofs for these results are provided in the text.

8.1.2 The proof when (11) is satisfied

Since RS > RF when (9) is satisfied and RS and RF are continuous functions of the valuations, it

follows that RS > RF if v1L ≤ v2L ≤ v1H < v2H and v2L is close to v1L.

8.1.3 The proof when (12) is satisfied

If λ ≥ 1
2 , then the condition λ2 ≥ max{12 , λ1} for Proposition 5(iia) is satisfied. Hence the proof

in Proposition 5(iia) applies to this setting to show that RS > RF for each profile of valuations in

region B, that is such that v1L ≤ v2L ≤ v1H < v2H .
39Precisely, if v1H < v01H < vH , then F1H and F2H given v01H first order stocastically dominate, respectively, F1H

and F2H given v1H .
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For valuations in region C, that is v1L < v1H < v2L < v2H , we show that UF ≥ US , and thus

RS > RF , if (12) is satisfied. Since v1H < v2H , Proposition 1(ii) applies and thus the aggregate

bidders’ rents in the FPA are UF = (1 − λ)(v1H − b̄) + (1 − λ)(v2H − b̄) + λ2(v2L − v1L) with

b̄ = λb̂+(1−λ)v1H . Since US = λv2L+(1−λ)v2H−λv1L−(1−λ)v1H , the difference UF−US is equal

to λ (1− λ) (v1L+2v1H−v2L−2b̂). From (22) we obtain b̂ = 1
2λ (λv1L + v2H − (1− λ) v1H −Q) with

Q =
q
((1− λ)v1H − λv1L − v2H)2 − 4λ(1− λ)(v2H − v1H)v2L − 4λ2v1Lv2H . Therefore UF ≥ US

boils down to Q ≥ v2H + λv2L − (1 + λ) v1H and (after squaring — notice that v2H + λv2L −
(1 + λ) v1H > 0) ultimately to

−λv22L + 2 (3v1H − 3v2H + 2λv2H − λv1H) v2L

+λv21L − 4v21H + 4v1Hv2H + 2(1− 2λ)v1Lv2H − 2(1− λ)v1Hv1L ≥ 0
(25)

We prove that this inequality holds for each v2L ∈ (v1H , v1H + 2λ−1
3−2λ(v1H − v1L) by verifying that

the left hand side of (25) is positive both at v2L = v1H and at v2L = v1H +
2λ−1
3−2λ(v1H − v1L). At

v2L = v1H , the left hand side in (25) reduces to (v1H − v1L)[λ(4v2H − 3v1H − v1L)− 2(v2H − v1H)]

which is positive since (i) it is increasing in λ; (ii) has value 1
2(v1H − v1L)

2 > 0 at λ = 1
2 . At

v2L = v1H +
2λ−1
3−2λ(v1H − v1L), the left hand side in (25) reduces to

8(1−λ)
(3−2λ)2 (v1H − v1L)

2 > 0.

8.2 Proof of Proposition 4(ii)

Given that λ1 = λ2, the condition λ2 ≥ λ1 for Proposition 5(iib) is satisfied. Hence the proof in

Proposition 5(iib) applies to this setting to show that RF −RS is increasing with respect to v2L in

region C.

Proof for the case of distribution shift In the case of shift, v2H−v1H = α and v2L−v1L = α.

If α ≤ v1H−v1L, then v2L ≤ v1H and US = λ2(v2L−v1L)+λ(1−λ)(v2H−v1L)+(1−λ)λ(v1H−v2L)+
(1−λ)2(v2H −v1H) = (1−2λ+2λ2)α+2λ(1−λ)(v1H −v1L). As a consequence, UF ≥ US reduces

to 2λ(v1H − v1L) ≥ (2 − 3λ)α. If λ > 2
5 , then this inequality is satisfied for any α ≤ v1H − v1L;

if instead λ ≤ 2
5 , then the inequality is violated for α = v1H − v1L and it holds if and only if

α ≤ 2λ
2−3λ(v1H − v1L).

If α > v1H−v1L, then v2L > v1H and US = λ2(v2L−v1L)+λ(1−λ)(v2H−v1L)+λ(1−λ)(v2L−
v1H) + (1 − λ)2(v2H − v1H) = α. As a consequence, UF ≥ US reduces to 2(2 + λ)(v1H − v1L) ≥
3(2− λ)α. If order for this inequality to be satisfied by an α larger than v1H − v1L it is necessary

that λ > 2
5 .

9 Proof of the claims in Subsection 4.2.4

When (3) is satisfied, G2(b) ≤ G1(b) holds for any b. Moreover, bidder 1 never wins in either

auction when (3) holds. Conversely, 2 wins with probability one and in the FPA he pays v1H ; in

the SPA his expected payment is the expected valuation of bidder 1, which is smaller than v1H .
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For i = 1, 2, let UF
i denote bidder i’s ex ante expected equilibrium payoff in the FPA; US

i

is defined likewise for the SPA. When (4) holds we find UF
1 = (1 − λ)λ(v1H − b̂), US

1 = (1 −
λ)λmax{v1H − v2L, 0}, and UF

1 > US
1 since b̂ < min{v2L, v1H}. Moreover, UF

2 = λ2(v2L − v1L) +

(1− λ)[v2H − λb̂− (1− λ)v1H ], US
2 = λ[λ(v2L − v1L) + (1− λ)max{v2L − v1H , 0}] + (1− λ)[v2H −

λv1L − (1− λ)v1H ], and US
2 − UF

2 = (1− λ)λ[max{v2L − v1H , 0}+ b̂− v1L] > 0 since b̂ > v1L.

For the equilibrium bid distributions we find G1(b) > G2(b) for any b ∈ [v1L, b̂] as G1(v1L) =
G2(b̂) = λ. For b ∈ (b̂, b̄], G1(b) = v2H−b̄

v2H−b and G2(b) =
v1H−b̄
v1H−b , hence G1(b) > G2(b) for b ∈ (b̂, b̄).

When (7) holds we obtain UF
1 = (1−λ)(v1H−λv1L−(1−λ)v2H), US

1 = (1−λ)(v1H−λv2L−(1−
λ)v2H), and UF

1 ≥ US
1 since v1L ≤ v2L. Moreover, UF

2 = US
2 = λ2(v2L−v1L)+ (1−λ)λ(v2H −v1L).

For the equilibrium bid distributions we find G1(b) = λv2H−v1L
v2H−b and G2(b) =

v1H−b̄
v1H−b with b̄ =

λv1L + (1− λ)v2H and G2(b) > G1(b) for any b ∈ [v1L, b̄).

10 Proof of the final claim in Subsection 4.2.5

We consider two sequences of atomless c.d.f. {Fn
1 , F

n
2 }+∞n=1, with continuous and positive densities

fn1 , f
n
2 for each n, which converges weakly to F̃1, F̃2. We show that for any large n, (13) and/or

(14) are violated by Fn
1 , F

n
2 .

When v1L < v2L, select an arbitrary v̂ ∈ (v1L, v2L) and notice that given a small ε > 0, for

a large n the inequality Fn
1 (v̂) > λ − ε holds. Therefore rn(v̂) = (Fn

2 )
−1[Fn

1 (v̂)] ≥ v2L − ε > v̂

[because limn→+∞ Fn
2 (v) = 0 for each v < v2L − ε] and

R rn(v̂)
v̂ fn2 (x)dx = Fn

2 [r
n(v̂)] − Fn

2 (v̂) >

λ − 2ε for a large n. If fn1 (v̂) ≥ fn2 (x) for any x ∈ [v̂, rn(v̂)], then limn→+∞ fn1 (v̂) = 0 implies

limn→+∞
R rn(v̂)
v̂ fn2 (x)dx = 0: contradiction. Hence (14) is violated if Fn

1 , F
n
2 are close to F̃1, F̃2

and v1L < v2L.

Now assume that v1L = v2L and v1H < v2H . Then given a small ε > 0 and a large n, the

inequality Fn
1 (v1H + ε) − Fn

1 (v1H − ε) =
R v1H+ε
v1H−ε f

n
1 (x)dx > 1 − λ − ε holds, and Fn

2 (v1H + ε) −
Fn
2 (v1H − ε) =

R v1H+ε
v1H−ε f

n
2 (x)dx tends to zero. Now notice that if there exists a number t > 0 such

that fn1 (x)
fn2 (x)

≤ t for any x ∈ (v1H − ε, v1H + ε) and any n, then
R v1H+ε
v1H−ε f

n
1 (x)dx ≤ t

R v1H+ε
v1H−ε f

n
2 (x)dx

and limn→+∞
R v1H+ε
v1H−ε f

n
1 (x)dx = 0. Thus for any t > 0, for any large n there exists some xn ∈

(v1H − ε, v1H + ε) such that fn1 (xn)
fn2 (xn)

> t, which implies that (13) cannot hold since Fn
2 (xn) > λ− ε.

11 Proof of Proposition 5

(i) Suppose that λ1 < λ2. Then Proposition 1(ii) applies and the ex ante expected payoffs of bidders

1 and 2 in the FPA and in the SPA are

UF
1 = (1− λ1)λ2(vH − b̂) and US

1 = (1− λ1)λ2(vH − v2L)

UF
2 = λ2λ1(v2L − v1L) + (1− λ2)λ2(vH − b̂) and US

2 = λ2λ1(v2L − v1L) + (1− λ2)λ1(vH − v1L)

From (2) we obtain b̂ = v2L − λ1
λ2
(v2L − v1L), and this reveals that UF

1 > US
1 and UF

2 > US
2 .
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In the opposite case such that λ1 ≥ λ2, Proposition 1(iii) applies and

UF
1 = (1− λ1)λ1(vH − v1L) > US

1 = (1− λ1)λ2(vH − v2L)

UF
2 = US

2 = λ2λ1(v2L − v1L) + (1− λ2)λ1(vH − v1L)

In either case, UF = UF
1 + UF

2 > US = US
1 + US

2 and thus R
S > RF .

(iia) Since λ2 ≥ λ1, inequality (4) holds in region B and Proposition 1(ii) applies for the FPA.

First we notice that for v2L = v1L, RF is decreasing in v2H . It suffices to notice from footnote

14 that an increase in v2H has the only effect of making 1H less aggressive by increasing G1H(b).

However, an increase in v2H does not affect RS . Since RS > RF at v2H = v1H , it follows that

RS > RF still holds for v2H > v1H . As a consequence, RS > RF in region B if v2L is close to v1L.

Now we show that RS > RF in region B if λ2 ≥ max{12 , λ1} by proving that UF ≥ US for any

profile of values in B. The bidders’ rents in the FPA are UF = (1−λ1)(v1H− b̄)+λ2λ1(v2L−v1L)+
(1−λ2)(v2H − b̄) with b̄ = λ2b̂+(1−λ2)v1H . On the other hand, the bidders’ rents in the SPA are

US = λ1λ2(v2L−v1L)+λ1(1−λ2)(v2H−v1L)+(1−λ1)λ2(v1H−v2L)+(1−λ1)(1−λ2)(v2H−v1H).
Hence the inequality UF ≥ US reduces to

(λ2 − λ1)(1− λ2)v1H + λ1(1− λ2)v1L + λ2(1− λ1)v2L ≥ λ2(2− λ1 − λ2)b̂ (26)

We show that (26) holds in region B if λ2 ≥ max{12 , λ1}. First we notice that (26) depends on
v2H only through b̂, and we prove that b̂ is (weakly) increasing with respect to v2H . Precisely,

we use Z to denote the left hand side in (2), thus ∂b̂
∂v2H

= −
∂Z

∂v2H b=b̂
∂Z
∂b |b=b̂

. Since b̂ is the smallest

solution of (2), it follows that ∂Z
∂b

¯̄
b=b̂

< 0. Moreover, ∂Z
∂v2H

¯̄̄
b=b̂

= λ1v1L + (1 − λ1)v2L − b̂ and

b̂ ≤ λ1v1L+(1−λ1)v2L since Z evaluated at b = λ1v1L+(1−λ1)v2L is equal to −λ1(1−λ2)(v2L−
v1L)[v1H − λ1v1L− (1− λ1)v2L] ≤ 0. Therefore ∂Z

∂v2H

¯̄̄
b=b̂

> 0 and ∂b̂
∂v2H

> 0. Using (22) we see that

limv2H→+∞ b̂ = λ1v1L + (1 − λ1)v2L, hence a sufficient condition for (26) to hold is (λ2 − λ1)(1 −
λ2)v1H +λ1(1−λ2)v1L+λ2(1−λ1)v2L ≥ λ2(2−λ1−λ2)(λ1v1L+(1−λ1)v2L), which is equivalent

to

(λ2 − λ1)(1− λ2)v1H + λ1(1− 3λ2 + λ1λ2 + λ22)v1L + λ2(1− λ1)(λ1 + λ2 − 1)v2L ≥ 0 (27)

Since the left hand side in (27) is linear in v2L and v1L ≤ v2L ≤ v1H in region B, we deduce that

(27) holds in region B if and only if it is satisfied at v2L = v1L and at v2L = v1H . At v2L = v1L, (27)

reduces to (1− λ2)(λ2 − λ1)(v1H − v1L) ≥ 0, which holds as λ2 > λ1. At v2L = v1H , (27) reduces

to λ1(3λ2− λ1λ2− λ22− 1)(v1H − v1L) ≥ 0, which holds as (i) the left hand side is increasing in λ2;

(ii) if λ1 < 1
2 , then λ2 ≥ max{12 , λ1} =

1
2 implies 3λ2 − λ1λ2 − λ22 − 1 ≥ 1

4 −
1
2λ1 > 0; (ii) if λ1 ≥

1
2 ,

then λ2 ≥ max{12 , λ1} = λ1 implies 3λ2 − λ1λ2 − λ22 − 1 ≥ 3λ1 − 2λ21 − 1 = (1− λ1)(2λ1 − 1) ≥ 0.
Now consider region C, that is valuations such that v1L < v1H < v2L < v2H . Then UF =

(1−λ1)λ2(v1H − b̂)+λ2λ1(v2L− v1L)+(1−λ2)(v2H −λ2b̂− (1−λ2)v1H) with b̄ = λb̂+(1−λ)v1H ,

and US = λ2v2L + (1 − λ2)v2H − λ1v1L − (1 − λ1)v1H . The inequality UF ≥ US is equivalent
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to −λ2(1 − λ1)v2L + λ1(1 − λ2)v1L + (3λ2 − λ2λ1 − λ22 − λ1)vH ≥ λ2(2 − λ2 − λ1)b̂. Using (22)

we obtain that UF ≥ US boils down to a inequality which is quadratic in v2L, with (complicated)

coefficients: −4λ2 (1− λ1) (3λ2+λ
2
1−λ22−λ1λ2−2λ1) for v22L, −4λ2(1−λ1)(3−λ1−λ2)(2−λ1−λ2)

v2H+4(6v1Hλ2−2v1Lλ21+v1Lλ31+2v1Hλ21−v1Hλ31+v1Hλ22−v1Hλ32−4v1Lλ1λ22+3v1Lλ21λ2+v1Lλ1λ32−
2v1Lλ

3
1λ2 + 3v1Hλ1λ

2
2 + 9v1Hλ

2
1λ2 − v1Hλ

3
1λ2 + v1Lλ

2
1λ
2
2 − v1Hλ

2
1λ
2
2 + 2v1Lλ1λ2 − 17v1Hλ1λ2) for

v2L, and 4 (2− λ1 − λ2)
¡
(λ1 + λ21λ2 − 3λ2λ1 + λ1λ

2
2)v1L + (3λ2 − λ2λ1 − λ22 − λ1)v1H

¢
v2H+4(1−

λ1)(2v1H − v1Lλ1)
¡
−λ1(1− λ2)v1L + (−3λ2 + λ2λ1 + λ22 + λ1)v1H

¢
as a constant term.

We prove that the inequality is satisfied if v1H < v2L ≤ v1H +
λ1(3λ2−λ22−λ1λ2−1)
λ2(1−λ1)(3−λ1−λ2) (v1H − v1L).

In order to do so, we notice that the coefficient of v22L is negative, that is 3λ2 + λ21 − λ22 − λ1λ2 −
2λ1 > 0, and thus it suffices to verify that the inequality holds at v2L = v1H and at v2L =

v1H +
λ1(3λ2−λ22−λ1λ2−1)
λ2(1−λ1)(3−λ1−λ2) (v1H − v1L). In particular, 3λ2 + λ21 − λ22 − λ1λ2 − 2λ1 is increasing in λ2,

and (i) if λ1 < 1
2 , then λ2 ≥ 1

2 and 3λ2 + λ21 − λ22 − λ1λ2 − 2λ1 ≥ 5
4 −

5
2λ1 + λ21 ≥ λ21; (ii) if λ1 ≥ 1

2 ,

then λ2 ≥ λ1 and 3λ2 + λ21 − λ22 − λ1λ2 − 2λ1 ≥ λ1(1 − λ1) ≥ 0. At v2L = v1H , the inequality

reduces to λ1 (v1H − v1L) ((3λ2−λ22−λ1λ2−1)(2−λ1−λ2)v2H +2v1H −v1Lλ1−7v1Hλ2+v1Lλ
2
1−

v1Hλ
2
1 + 5v1Hλ

2
2 − v1Hλ

3
2 − v1Lλ

2
1λ2 − 2v1Hλ1λ22 + v1Lλ1λ2 + 4v1Hλ1λ2) ≥ 0, and since v2H ≥ v1H ,

the left hand side is larger than λ1(v1H − v1L)((3λ2 − λ22 − λ1λ2 − 1)(2 − λ1 − λ2)v1H + 2v1H −
v1Lλ1 − 7v1Hλ2 + v1Lλ

2
1 − v1Hλ

2
1 +5v1Hλ

2
2 − v1Hλ

3
2 − v1Lλ

2
1λ2 − 2v1Hλ1λ22 + v1Lλ1λ2 +4v1Hλ1λ2),

which is equal to λ21(1−λ1)(1−λ2)(v1H −v1L)2 > 0. At v2L = v1H +
λ1(3λ2−λ22−λ1λ2−1)
λ2(1−λ1)(3−λ1−λ2) (v1H −v1L),

the inequality reduces to λ21(1− λ2)(3λ2 − λ1 − λ22 − λ1λ2)
(2−λ1−λ2)2(v1H−v1L)2
λ2(1−λ1)(3−λ1−λ2)2

, which is positive.

(iib) Since RS does not depend on v2L in region C, we need to prove that ∂RF

∂v2L
> 0. To this

purpose we notice that (4) is satisfied in region C and we show that ∂b̂
∂v2L

> 0. This implies ∂b̄
∂v2L

> 0

and from (5)-(6) it follows that G1H(b), G2L(b), G2H(b) are all decreasing in v2L, which implies that

types 1H , 2L, 2H are all more aggressive as v2L increases. Thus RF is increasing with respect to

v2L. In order to see that ∂b̂
∂v2L

= −
∂Z
∂v2L b=b̂
∂Z
∂b |b=b̂

> 0, recall from the proof of Proposition 5(iia) that

∂Z
∂b

¯̄
b=b̂

< 0 and ∂Z
∂v2L

¯̄̄
b=b̂

= (λ1 − λ2)b̂+ (1− λ1)v2H − (1− λ2)v1H . Since v2H > v1H in region C,

we find ∂Z
∂v2L

¯̄̄
b=b̂

> (λ2 − λ1)(v1H − b̂) ≥ 0; therefore ∂b̂
∂v2L

> 0.

(iiia) Given that λ1 ≥ λ2, in region A the inequality (7) is satisfied and thus Proposition

1(iii) applies for the FPA. This implies that G1, G2, the equilibrium bid distributions of the two

bidders, are independent of λ2: using (8) we find G1(b) = λ1 + (1− λ1)G1H(b) =
λ1(v2H−v1L)

v2H−b and

G2(b) = λ2+(1−λ2)G2H(b) =
v1H−(1−λ1)v2H−λ1v1L

v1H−b for b ∈ [v1L, λ1v1L+(1−λ1)v2H ]. Hence RF is

independent of λ2, whereas RS = λ1v1L + (1− λ1)(λ2v2L + (1− λ2)v2H) in region A, and thus RS

is decreasing in λ2. Therefore, given λ2 ≤ λ1, the minimum of RS with respect to λ2 is reached at

λ2 = λ1. Then we can apply Proposition 4 [condition (10)] to conclude that RS > RF .

(iiib) The proof is organized in four steps

Step 1: In region B, RF −RS is increasing with respect to v2H if (7) is satisfied.
In region B, RS is independent of v2H . On the other hand, Proposition 1(iii) reveals that RF is

increasing in v2H : the bidding behavior of types 1L, 2L does not depend on v2H whereas types
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1H , 2H bid more aggressively as v2H increases [as G1H(b) and G2H(b) are decreasing in v2H ]. Hence

RF −RS is increasing in v2H .

Step 2: In region B, RF > RS if (4) is satisfied and λ1 > λ2(1 + ln
1
λ2
).

We start by proving that b̂ and b̄ are increasing with respect to v2L, and then show that also

RF is increasing in v2L. Precisely, we use Z to denote the left hand side in (2) and prove that

∂b̂
∂v2L

= −
∂Z
∂v2L b=b̂
∂Z
∂b |b=b̂

> 0. Since b̂ is the smallest solution of (2), it follows that ∂Z
∂b

¯̄
b=b̂

< 0. Moreover,

∂Z
∂v2L

¯̄̄
b=b̂

= (λ1 − λ2)b̂ + (1 − λ1)v2H − (1 − λ2)v1H and (4) implies (1 − λ1)v2H > (1 − λ2)v1H +

(λ2 − λ1)v1L. Therefore ∂Z
∂v2L

¯̄̄
b=b̂

> (λ1 − λ2)b̂ + (1 − λ2)v1H + (λ2 − λ1)v1L − (1 − λ2)v1H =

(λ1 − λ2)(b̂− v1L) > 0, and hence ∂b̂
∂v2L

> 0, ∂b̄
∂v2L

> 0.

From (5)-(6) we see that types 1H , 2L, 2H are all more aggressive as v2L increases, as in the proof

of Proposition 5(iib). Thus RF is increasing with respect to v2L, and let RF
min denote R

F when v2L
takes on its minimum value, that is at v2L = v1L. Also RS is increasing with respect to v2L, and

RS = λ1v1L+(1−λ1)v1H when v2L takes on its maximum value in region B, that is at v2L = v1H .

We prove below that RF
min > λ1v1L + (1− λ1)v1H , which implies that RF > RS in region B when

(4) is satisfied.

When v2L = v1L, the equilibrium bidding in the FPA is described in footnote 14 and it is clear that

RF
min is decreasing in v2H , as seen in the proof of Proposition 5(iia). Hence R

F
min > limv2H→+∞RF

min,

and using (23) we see that limv2H→+∞RF
min = λ2v1L + (1 − λ2)v1H + λ2(v1H − v1L) lnλ2. The

inequality λ2v1L + (1 − λ2)v1H + λ2(v1H − v1L) lnλ2 > λ1v1L + (1− λ1)v1H is equivalent to λ1 >

λ2(1 + ln
1
λ2
), which holds by assumption.

Step 3: If v2L ≤ v1H, then there exists v∗2H [and v∗2H > v1H, such that (7) is satisfied]
such that RS > RF when v2H < v∗2H , and RF > RS when v2H > v∗2H.
This is immediate consequence of RS > RF if v2H = v1H [from Proposition 5(ia)], and Steps 1 and

2 in this proof.

Step 4: If v2L > v1H is not too larger than v1H, then there exists v∗2H (and v∗2H > v1H)
such that RS > RF when v2H ∈ (v2L, v∗2H), but RF > RS when v2H > v∗2H . If conversely
v2L is much larger than v1H, then RF > RS for any v2H > v2L.
We start from a profile of valuations (v1L, v1H , v2L, v2H) such that v2L = v1H and (7) is satisfied,

and consider increasing v2L, which implies that region C is entered. The increase in v2L has no

effect on RF and has no effect on RS , thus RF > RS if and only if v2H is sufficiently large.

Now start from (v1L, v1H , v2L, v2H) such that v2L = v1H and (4) is satisfied. We know from Step 2

in this proof that RF > RS. Then consider increasing v2L, which implies that region C is entered.

From the proof of Step 2 we know that the increase in v2L increases RF , and it has no effect on

RS . Hence RF > RS .

36



12 Proof of Proposition 6

12.1 Proof of Proposition 6(i)

Consider type 1j , for j = L,M,H. Given that each type of bidder 2 bids v1H , for type 1j there is

no incentive to make a bid different from the own valuation v1j , given that v1j ≤ v1H .

Now consider type 2j , for j = L,M,H, and notice that bidding b = v1H yields him payoff

v2j − v1H > 0, whereas u2j(b) = 0 if b < v1L, u2j(b) = λL(v2j − b) if b ∈ [v1L, v1M), and u2j(b) =

(λL+λM)(v2j−b) if b ∈ [v1M , v1H). Given that λHv2L+(λL+λM)v1M ≥ v1H and (λM +λH)v2L+

λLv1L ≥ v1H we infer that u2j(b) ≤ v2j − v1H for any b < v1H .

12.2 Proof of Proposition 6(ii)

We use vL, vM , vH+α to denote the valuations of bidder 1, and vL, vM , vH to denote the valuations

of bidder 2. In Steps 1-3 in this proof we consider the case of a small α > 0.

First we show that there exists a BNE in the FPA characterized by three bids b1, b2, b3 such

that (i) vL < b1 < b2 < b3; (ii) 1L bids vL, 1M and 1H play mixed strategies with support (vL, b2]

for 1M and [b2, b3] for 1H ; (iii) 2L bids vL, 2M and 2H play mixed strategies with support [vL, b1]

for 2M and [b1, b3] for 2H . Then we prove that dRF

dα

¯̄̄
α=0

< 0 for this BNE, and thus RF is smaller

for a small α > 0 than in the case of α = 0.

12.2.1 Step 1: Characterization of the equilibrium mixed strategies

Given the supports for the mixed strategies described above, we obtain the following indifference

conditions for types 1M , 1H , 2M , 2H . We use Gij to denote the c.d.f. of the mixed strategy of type

ij , for i = 1, 2 and j = L,M,H.

Type 1M :

(vM − b)[λL + λMG2M(b)] = (λL + λM)(vM − b1) for any b ∈ (vL, b1] (28)

(vM − b)[λL + λM + λHG2H(b)] = (λL + λM)(vM − b1) for any b ∈ [b1, b2] (29)

Type 1H :

(vH + α− b)[λL + λM + λHG2H(b)] = vH + α− b3 for any b ∈ [b2, b3] (30)

Type 2M :

(vM − b)[λL + λMG1M(b)] = λL(vM − vL) for any b ∈ [vL, b1] (31)

Type 2H :

(vH − b)[λL + λMG1M(b)] = vH − b3 for any b ∈ [b1, b2] (32)

(vH − b)[λL + λM + λHG1H(b)] = vH − b3 for any b ∈ [b2, b3] (33)
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Equilibrium rules out mass points at any b > vL, thus each c.d.f. needs to be continuous at

bids larger than vL, and using (31)-(32) we find that G1M is continuous at b = b1 if and only if
λL(vM−vL)

vM−b1 = vH−b3
vH−b1 , or

λL(vH − b1)(vM − vL) = (vM − b1)(vH − b3) (34)

Likewise, (29)-(30) reveal that G2H is continuous at b = b2 if and only if
(λL+λM )(vM−b1)

vM−b2 = vH+α−b3
vH+α−b2 ,

or

(λL + λM)(vM − b1)(vH + α− b2) = (vH + α− b3)(vM − b2) (35)

Finally, G1H(b2) needs to be 0, and then (33) yields

b3 = λHvH + (λL + λM) b2 (36)

Inserting (36) into (34) and (35) we obtain two equations in the unknowns b1, b2:

λL(vH − b1)(vM − vL)− (λL + λM) (vM − b1)(vH − b2) = 0 (37)

(λL + λM)(vM − b1)(vH + α− b2)− ((λL + λM)(vH − b2) + α)(vM − b2) = 0 (38)

The system of equations (36)-(38) characterizes the equilibrium values of b1, b2, b3. In the next step

we prove that vL < b1 < b2 < b3 for a small α > 0, and here we show that these inequalities imply

that no incentive to deviate exists for any type, that is the strategies we have described constitute

a BNE.

First we notice that the range of bids submitted by bidder 1 and by bidder 2 is [vL, b3], thus

for no type it is profitable to deviate with a bid below vL or above b3. Second, it is useful to take

into account the following fact (the proof is immediate after differentiating u with respect to b):

For given α1 > 0, α2 > 0, the function u(b) = α1−b
α2−b , defined for b ∈ [0, α2),

is increasing if α1 > α2, is decreasing if α1 < α2.
(39)

Type 1L. Type 1L bids vL with probability one, which gives him payoff zero. Since u1L(b) < 0 if

he bids b ∈ (vL, b3], he has no incentive to bid in (vL, b3].
Type 1M . Type 1M plays a mixed strategy with support (vL, b2] and his payoff is (λL+λM)(vM −
b1). If instead he bids b ∈ (b2, b3], then u1M(b) = (vH + α − b3)

vM−b
vH+α−b [in view of (30)], which is

decreasing in b since vM < vH + α. This gives type 1M no incentive to bid in (b2, b3]. Regarding

b = vL, notice that G2M(vL) > 0 since, as we prove in Step 2, b1 < vL+
λM∆

λL+λM
. Therefore bidding

b = vL implies for type 1M a positive probability of tying with type 2M (with a probability of

winning in this case equal to 1
2) and therefore a discrete reduction in the probability of winning

with respect to bids slightly above vL. This makes bidding vL an unprofitable deviation for 1M .

Type 1H . Type 1H plays a mixed strategy with support [b2, b3] and his payoff is vH + α − b3. If

instead he bids b ∈ (vL, b2), then u1H(b) = (λL + λM)(vM − b1)
vH+α−b
vM−b [in view of (28) and (29)],

which is increasing in b since vH + α > vM . Therefore type 1H has no incentive to bid in (vL, b2).

The same argument described for type 1M reveal that the bid b = vL is an unprofitable deviation

for 1H .
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Type 2L. Type 2L bids vL with probability one, which gives him payoff zero. Since u2L(b) < 0 if

he bids b ∈ (vL, b3], he has no incentive to bid in (vL, b3].
Type 2M . Type 2M plays a mixed strategy with support [vL, b1] and his payoff is λL(vM − vL). If

instead he bids b ∈ (b1, b3], then u2M(b) = (vH − b3)
vM−b
vH−b [in view of (32)-(33)], which is decreasing

in b since vM < vH . This gives type 2M no incentive to bid in (b1, b3].

Type 2H . Type 2H plays a mixed strategy with support [b1, b3] and his payoff is vH−b3. If instead
he bids b ∈ [vL, b1), then u2H(b) = λL(vM −vL) vH−bvM−b [in view of (31)], which is increasing in b since

vH > vL. This gives type 2H no incentive to bid in [vL, b1).

12.2.2 Step 2: For a small α > 0, the inequalities vL < b1 < b2 < b3 hold

In the following we use ∆ ≡ vM − vL > 0 and t ≡ 1
∆(vH − vM) > 0. The values of b1, b2, b3 depend

on α, and therefore we write b1(α), b2(α), b3(α). When α = 0 we obtain the symmetric setting,

with b1(0) = b2(0) = vL +
λM∆

λL+λM
, b3(0) = vL + (λM + λH + λHt)∆. We investigate how b1, b2, b3

depend on α, for a small α > 0, by applying the implicit function theorem to (37)-(38) at α = 0,

b1 = b2 = vL +
λM∆

λL+λM
; in this way we obtain b01(0), b

0
2(0), b

0
3(0). To this purpose we denote the left

hand sides of (37), (38) with f1(b1, b2, α), f2(b1, b2, α), respectively. Then we obtain

∂f1
∂b1

= (λL + λM) (vH − b2)− λL∆,
∂f1
∂b2

= (λL + λM) (vM − b1),
∂f1
∂α

= 0

∂f2
∂b1

= −(λL + λM)(vH + α− b2),
∂f2
∂b2

= (λL + λM) (vH + b1 − 2b2) + α,

∂f2
∂α

= b2 − (λL + λM)b1 − λHvM

We evaluate these derivatives at α = 0, b1 = b2 = vL +
λM∆

λL+λM
and find"

b01(0)

b02(0)

#
= −

"
(λL + λM)∆t λL∆

− (λL + tλL + tλM)∆ (λL + tλL + tλM)∆

#−1 "
0

− λHλL
λL+λM

∆

#

=

⎡⎣ − λHλ2L
(λL+tλL+tλM )

2(λL+λM )
λHλLt

(λL+tλL+tλM )
2

⎤⎦
Using (36) we see that b03(0) =

(λL+λM )λHλLt

(λL+tλL+tλM )
2 . In next step we use b01(0), b

0
2(0), b

0
3(0) to derive

dRF

dα

¯̄̄
α=0

.

12.2.3 Step 3: Proof that dRF

dα

¯̄̄
α=0

< 0

We define Gi(b) as λLGiL(b) + λMGiM(b) + λHGiH(b) for i = 1, 2, so that G(b) ≡ G1(b)G2(b) is

the c.d.f. of the winning bid. In particular, from (28)-(33) we obtain

G(b) =

⎧⎪⎪⎨⎪⎪⎩
[λL + λMG1M(b)][λL + λMG2M(b)] = λL(λL + λM)

∆[vM−b1(α)]
(vM−b)2 if b ∈ [vL, b1(α))

[λL + λMG1M(b)][λL + λM + λHG2H(b)] = (λL + λM)
[vH−b3(α)][vM−b1(α)]

(vM−b)(vH−b) if b ∈ [b1(α), b2(α))
[λL + λM + λHG1H(b)][λL + λM + λHG2H(b)] =

[vH−b3(α)][vH+α−b3(α)]
(vH−b)(vH+α−b) if b ∈ [b2(α), b3(α)]
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Since

RF = vLG(vL) +

Z b3(α)

vL

bdG(b) = b3(α)−
Z b3(α)

vL

G(b)db

= b3(α)−
Z b1(α)

vL

λL(λL + λM)
∆[vM − b1(α)]

(vM − b)2
db−

Z b2(α)

b1(α)
(λL + λM)

[vH − b3(α)][vM − b1(α)]

(vM − b)(vH − b)
db

−
Z b3(α)

b2(α)

[vH − b3(α)][vH + α− b3(α)]

(vH − b)(vH + α− b)
db

we can use this expression to evaluate dRF

dα

¯̄̄
α=0

.

• The derivative of
R b1(α)
vL

λL(λL+λM)
∆[vM−b1(α)]
(vM−b)2 db with respect to α is λL(λL+λM)∆[

b01(α)
vM−b1−R b1(α)

vL

b01(α)
(vM−b)2db] and at α = 0 it boils down to −

λHλ3L
(λL+tλL+tλM )

2 .

• The derivative of
R b2(α)
b1(α)

(λL + λM)
[vH−b3(α)][vM−b1(α)]

(vM−b)(vH−b) db with respect to α is

(λL + λM){
[vH − b3(α)][vM − b1(α)]

[vM − b2(α)][vH − b2(α)]
b02(α)−

vH − b3(α)

vH − b1(α)
b01(α)

−
Z b2(α)

b1(α)

b03(α)[vM − b1(α)] + b01(α)[vH − b3(α)]

(vM − b)(vH − b)
db}

and at α = 0 it boils down to (λL+λM )λLλH
λL+tλL+tλM

.

• The derivative of
R b3(α)
b2(α)

[vH−b3(α)][vH+α−b3(α)]
(vH−b)(vH+α−b) db with respect to α is

b03(α)−
[vH − b3(α)][vH + α− b3(α)]b

0
2(α)

[vH − b2(α)][vH + α− b2(α)]

+

Z b3(α)

b2(α)

{[vH − b3(α)][1− 2b03(α)]− αb03(α)}(vH + α− b)− [vH − b3(α)][vH + α− b3(α)]

(vH − b)(vH + α− b)2
db

and at α = 0 it boils down to λ2HλL(λL+λM )t

(λL+tλL+tλM )
2+

λ2H(tλL+tλM−λL)2
2(λL+tλL+tλM )

2 which is equal to λ2H
(λL+λM )

2t2+λ2L
2(λL+tλL+tλM )

2 .

Therefore

dRF

dα

¯̄̄̄
α=0

=
(λL + λM)λHλLt

(λL + tλL + tλM)
2 +

λHλ
3
L

(λL + tλL + tλM)
2 −

(λL + λM)λLλH
λL + tλL + tλM

− λ2H
(λL + λM)

2 t2 + λ2L
2 (λL + tλL + tλM)

2

= −λH
λH (λL + λM)

2 (t− λL
λL+λM

)2 + 2λ2LλM

2 (λL + tλL + tλM)
2 < 0

On the other hand, RS does not change if α increases from 0 to a positive value, thus RS > RF for

a small α > 0.
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12.2.4 Step 4: The case of a small reduction in v1H

Consider the symmetric setting such that v1L = v2L = vL, v1M = v2M = vM , v1H = v2H = vH ;

then RF = vL + (λM + λH)
2∆ + λ2H∆t. We need to prove that R

F is larger in this case than if

v1H is reduced to vH − α, for a small α > 0. In order to prove the latter property, consider first

the symmetric setting in which v1L = v2L = vL, v1M = v2M = vM , v1H = v2H = vH − α; then

RF = vL+(λM +λH)
2∆+λ2H(∆t−α). Now increase v2H from vH −α to vH . By Steps 1-3 in this

proof, the effect is that RF is reduced below vL + (λM + λH)
2∆+ λ2H(∆t − α), which guarantees

that RF is smaller than vL + (λM + λH)
2∆+ λ2H∆t.

12.3 Proof of Proposition 6(iii)

In this proof we use vL, vM , vH to denote the valuations of bidder 1, and vL + yα, vM , vH − α to

denote the valuations of bidder 2, for an arbitrary y > 0 and a small α > 0.

First we show that there exists a BNE in the FPA characterized by three bids b1, b2, b3 such that

(i) vL < b1 < b2 < b3; (ii) 1L bids vL, 1M and 1H play mixed strategies with support (vL, b2] for 1M
and [b2, b3] for 1H ; (iii) 2L bids vL, 2M and 2H play mixed strategies with supports [vL, b1] for 2M
and [b1, b3] for 2H . Then we evaluate dRF

dα

¯̄̄
α=0

for this BNE and prove that dRF

dα

¯̄̄
α=0

< dRS
dα

¯̄
α=0

.

Thus RF < RS for a small α > 0.

12.3.1 Step 1: Characterization of the equilibrium mixed strategies

Given the supports for the mixed strategies described above, we obtain the following indifference

conditions for types 1M , 1H , 2M , 2H . We use Gij to denote the c.d.f. of the mixed strategy of type

ij , for i = 1, 2 and j = L,M,H.

Type 1M :

(vM − b)[λL + λMG2M(b)] = (λL + λM)(vM − b1) for any b ∈ [vL, b1] (40)

(vM − b)[λL + λM + λHG2H(b)] = (λL + λM)(vM − b1) for any b ∈ [b1, b2] (41)

Type 1H :

(vH − b)[λL + λM + λHG2H(b)] = vH − b3 for any b ∈ [b2, b3] (42)

Type 2M :

(vM − b)[λL + λMG1M(b)] = λL(vM − vL) for any b ∈ [vL, b1] (43)

Type 2H :

(vH − α− b)[λL + λMG1M(b)] = vH − α− b3 for any b ∈ [b1, b2] (44)

(vH − α− b)[λL + λM + λHG1H(b)] = vH − α− b3 for any b ∈ [b2, b3] (45)
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Equilibrium rules out mass points at any b > vL, thus each c.d.f. needs to be continuous at

bids larger than vL, and using (43)-(44) we find that G1M is continuous at b = b1 if and only if
λL(vM−vL)

vM−b1 = vH−α−b3
vH−α−b1 , or

λL(vH − α− b1)(vM − vL)− (vM − b1)(vH − α− b3) = 0 (46)

Likewise, (41)-(42) reveal that G2H is continuous at b = b2 if and only if
(λL+λM )(vM−b1)

vM−b2 = vH−b3
vH−b2 ,

or

(λL + λM)(vM − b1)(vH − b2)− (vH − b3)(vM − b2) (47)

Finally, G1H(b2) needs to be 0, and then (45) yields

b3 = λH(vH − α) + (λL + λM) b2 (48)

Inserting (48) into (46) and (47) we obtain two equations in the unknowns b1, b2:

λL(vH − α− b1)(vM − vL)− (λL + λM) (vM − b1)(vH − α− b2) = 0 (49)

(λL + λM)(vM − b1)(vH − b2)− ((1− λH)(vH − b2) + λHα)(vM − b2) = 0 (50)

The system of equations (48)-(50) characterizes the equilibrium values of b1, b2, b3. It is important

to notice that the valuation of type 2L, vL + yα, plays no role. In the next step we prove that

vL < b1 < b2 < b3 for a small α > 0, and here we show that these inequalities imply that no

incentive to deviate exists for any type, that is the strategies we have described constitute a BNE.

First we notice that the range of bids submitted by bidder 1 and by bidder 2 is [vL, b3], thus

for no type it is profitable to deviate with a bid below vL or above b3. Second, it is useful to take

into account fact (39).

Type 1L. Type 1L bids vL with probability one, which gives him payoff zero. Since u1L(b) < 0 if

he bids b ∈ (vL, b3], he has no incentive to bid in (vL, b3].
Type 1M . Type 1M plays a mixed strategy with support (vL, b2] and his payoff is (λL+λM)(vM −
b1). If instead he bids b ∈ (b2, b3], then u1M(b) = (vH−b3)vM−bvH−b [in view of (42)], which is decreasing

in b since vM < vH . This gives type 1M no incentive to bid in (b2, b3]. Regarding b = vL, notice

that G2M(vL) > 0 since, as we prove in Step 2, b1 < vL+
λM∆

λL+λM
. Therefore bidding b = vL implies

for type 1M a positive probability of tying with type 2M (with a probability of winning in this case

equal to 1
2) and therefore a discrete reduction in the probability of winning with respect to bids

slightly above vL. This makes bidding vL an unprofitable deviation for 1M .

Type 1H . Type 1H plays a mixed strategy with support [b2, b3] and his payoff is vH−b3. If instead
he bids b ∈ (vL, b2), then u1H(b) = (λL + λM)(vM − b1)

vH−b
vM−b [in view of (40) and (41)], which is

increasing in b since vH > vM . Therefore type 1H has no incentive to bid in (vL, b2). The same

argument described for type 1M reveal that the bid b = vL is an unprofitable deviation for 1H .

Type 2L. Type 2L bids vL with probability one, which gives him payoff λLyα. If instead he bids

b ∈ (vL, vL + yα], then u2L(b) = λL(vM − vL)
vL+yα−b
vM−b [in view of (43)], which is decreasing in b
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since vL + yα < vM . Hence 2L has no incentive to bid in (vL, vL + yα], and u2L(b) < 0 if he bids

b ∈ (vL + yα, b3].

Type 2M . Type 2M plays a mixed strategy with support [vL, b1] and his payoff is λL(vM − vL).

If instead he bids b ∈ (b1, b3], then u2M(b) = (vH − α − b3)
vM−b

vH−α−b [in view of (44)-(45)], which is

decreasing in b since vM < vH − α. This gives type 2M no incentive to bid in (b1, b3].

Type 2H . Type 2H plays a mixed strategy with support [b1, b3] and his payoff is vH − α − b3. If

instead he bids b ∈ [vL, b1), then u2H(b) = λL(vM −vL)vH−α−bvM−b [in view of (43)], which is increasing

in b since vH > vM . This gives type 2H no incentive to bid in [vL, b1).

12.3.2 Step 2: For a small α > 0, we have vL < b1 < b2 < b3

In the following we use ∆ ≡ vM − vL > 0 and t ≡ 1
∆(vH − vM) > 0. The values of b1, b2, b3 depend

on α, and therefore we write b1(α), b2(α), b3(α). When α = 0 we obtain the symmetric setting,

with b1(0) = b2(0) = vL +
λM∆

λL+λM
, b3(0) = vL + (λM + λH + tλH)∆. We investigate how b1, b2, b3

depend on α, for a small α > 0, by applying the implicit function theorem to (49)-(50) at α = 0,

b1 = b2 = vL +
λM∆

λL+λM
; in this way we obtain b01(0), b

0
2(0), b

0
3(0). To this purpose we denote the left

hand sides of (49),(50) with f1(b1, b2, α), f2(b1, b2, α), respectively. Then we obtain

∂f1
∂b1

= (1− λH)(vH − α− b2)− λL∆,
∂f1
∂b2

= (1− λH)(vM − b1),
∂f1
∂α

= (1− λH)(vM − b1)− λL∆

∂f2
∂b1

= −(1− λH)(vH − b2),
∂f2
∂b2

= (1− λH)(vH + b1 − 2b2) + λHα,
∂f2
∂α

= −λH(vM − b2)

We evaluate these derivatives at α = 0, b1 = b2 = vL +
λM∆

λL+λM
and find"

b01(0)

b02(0)

#
= −

"
(λL + λM)∆t λL∆

− (λL + tλL + tλM)∆ (λL + tλL + tλM)∆

#−1 "
0

− λHλL
λL+λM

∆

#

=

⎡⎣ − λHλ2L
(λL+tλL+tλM )

2(λL+λM )
λHλLt

(λL+tλL+tλM )
2

⎤⎦
Using (48) we see that b03(0) = −λH +

(λL+λM )λHλLt

(λL+tλL+tλM )
2 = −λH (λL+λM )

2t2+λL(λL+λM )t+λ
2
L

(λL+tλL+tλM )
2 . In next

step we use b01(0), b
0
2(0), b

0
3(0) to derive

dRF

dα

¯̄̄
α=0

.

12.3.3 Step 3: Evaluation of dRF

dα

¯̄̄
α=0

We define Gi(b) as λLGiL(b) + λMGiM(b) + λHGiH(b) for i = 1, 2, so that G(b) ≡ G1(b)G2(b) is

the c.d.f. of the winning bid. In particular, from (40)-(45) we obtain

G(b) =

⎧⎪⎨⎪⎩
[λL + λMG1M(b)][λL + λMG2M(b)] = λL(λL + λM)

vM−vL
vM−b

vM−b1(α)
vM−b if b ∈ [vL, b1(α))

[λL + λMG1M(b)][λL + λM + λHG2H(b)] = (λL + λM)
vH−α−b3(α)
vH−α−b

vM−b1(α)
vM−b if b ∈ [b1(α), b2(α))

[λL + λM + λHG1H(b)][λL + λM + λHG2H(b)] =
vH−α−b3(α)
vH−α−b

vH−b3(α)
vH−b if b ∈ [b2(α), b3(α)]
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Since

RF = vLG(vL) +

Z b3(α)

vL

bdG(b) = b3(α)−
Z b3(α)

vL

G(b)db

= b3(α)−
Z b1(α)

vL

λL(λL + λM)
∆

vM − b

vM − b1(α)

vM − b
db

−
Z b2(α)

b1(α)
(λL + λM)

vH − α− b3(α)

vH − α− b

vM − b1(α)

vM − b
db−

Z b3(α)

b2(α)

vH − α− b3(α)

vH − α− b

vH − b3(α)

vH − b
db

• The derivative of
R b1(α)
vL

λL∆
vM−b(λL + λM)

vM−b1(α)
vM−b db with respect to α is

λL(λL + λM)b
0
1(α)∆[

1

vM − b1
−
Z b1(α)

vL

1

(vM − b)2
db]

and at α = 0 it boils down to − λHλ3L
(λL+tλL+tλM )2

.

• The derivative of
R b2(α)
b1(α)

vH−α−b3(α)
vH−α−b (λL + λM)

vM−b1(α)
vM−b db with respect to α is

(λL+λM)

Ã
[vH−α−b3(α)][vM−b1(α)]
[vM−b2(α)][vH−α−b2(α)]b

0
2(α)−

vH−α−b3(α)
vH−α−b1(α)b

0
1(α)

−
R b2(α)
b1(α)

{−[1+b03(α)][vM−b1(α)]−b01(α)[vH−α−b3(α)]}(vH−α−b)+[vH−α−b3(α)][vM−b1(α)]
(vM−b)(vH−α−b)2 db

!

and at α = 0 it boils down to (λL+λM )λLλH
λL+tλL+tλM

.

• The derivative of
R b3(α)
b2(α)

vH−α−b3(α)
vH−α−b

vH−b3(α)
vH−b db with respect to α is

b03(α)−
[vH − α− b3(α)][vH − b3(α)]

[vH − α− b2(α)][vH − b2(α)]
b02(α)

+

Z b3(α)

b2(α)

{αb03(α) + [b3(α)− vH ][1 + 2b
0
3(α)]}(vH − α− b) + [vH − α− b3(α)][vH − b3(α)]

(vH − b)(vH − α− b)2
db

and at α = 0 it boils down to−λH (λL+λM )
2t2+λL(2−λH)(λL+λM )t+λ2L
(λL+tλL+tλM )

2 +λ2H
3(λL+λM )

2t2+2λL(λL+λM )t+3λ
2
L

2(λL+tλL+tλM )
2 ,

which is equal to λH
(3λH−2)(λ2L+(λL+λM )

2t2)−4λL(λL+λM )2t
2(λL+tλL+tλM )

2 .

Therefore

dRF

dα
= −λH

t2(1− λH)
2 + λL(λL + tλL + tλM)

(λL + tλL + tλM)
2 +

λHλ
3
L

(λL + tλL + tλM)
2 −

(1− λH)λLλH
λL + tλL + tλM

−λH
(1− 3λL − 3λM) (λ2L + (1− λH)

2t2)− 4λL(1− λH)
2t

2 (λL + tλL + tλM)
2

= −λH
λ2L (3λH + 2λM) + λH(1− λH)(2λL + 3(1− λH)t)t

2 (λL + tλL + tλM)
2
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12.3.4 Step 4: d(RS−RF )
dα

¯̄̄
α=0

> 0

It is straightforward to see that

RS = λLvL + λMλL(vL + yα) + λM(λM + λH)vM + λHλL(vL + yα) + λHλMvM + λ2H(vH − α)

= vL + ((1− λL)
2 + tλ2H)∆+ (yλL(1− λL)− λ2H)α

and thus dRS

dα = yλL(1− λL)− λ2H . The inequality
d(RS−RF )

dα

¯̄̄
α=0

> 0 is equivalent to

yλL(1− λL)− λ2H + λH
λ2L (3λH + 2λM) + λH(1− λH)(2λL + 3(1− λH)t)t

2 (λL + tλL + tλM)
2 > 0

For y = 0, the left hand side in this inequality is λH
λH(1−λH)2(t−

λL
1−λH

)2+2λ2LλM

2(λL+tλL+tλM )
2 , which is positive

and thus d(RS−RF )
dα

¯̄̄
α=0

> 0 for any y ≥ 0.

12.4 Proof of Proposition 6(iv)

In this proof we use vL, vM , vH to denote the valuations of bidder 1 and vL + α, vM + α, vH + α to

denote the valuations of bidder 2, for a small α > 0.

First we show that there exists a BNE in the FPA characterized by four bids b1, b2, b3, b4 such

that (i) vL < b1 < b2 < b3 < b4; (ii) 1L bids vL, 1M and 1H play mixed strategies with support

[vL, b2] for 1M and [b2, b4] for 1H ; (iii) 2L, 2M , 2H play mixed strategies with support [vL, b1]

for 2L, [b1, b3] for 2M , [b3, b4] for 2H . Then we evaluate dRF

dα

¯̄̄
α=0

for this BNE and prove that

dRF

dα

¯̄̄
α=0

< dRS
dα

¯̄
α=0

. Thus RF < RS for a small α > 0.

12.4.1 Step 1: Characterization of the equilibrium mixed strategies

Given the supports for the mixed strategies described above, we obtain the following indifference

conditions for types 1M , 1H , 2L, 2M , 2H . We use Gij to denote the c.d.f. of the mixed strategy of

type ij , for i = 1, 2 and j = L,M,H.

Type 1M :

(vM − b)λLG2L(b) = λL(vM − b1) for any b ∈ [vL, b1] (51)

(vM − b)[λL + λMG2M(b)] = λL(vM − b1) for any b ∈ (b1, b2] (52)

Type 1H :

(vH − b)[λL + λMG2M(b)] = vH − b4 for any b ∈ [b2, b3] (53)

(vH − b)[λL + λM + λHG2H(b)] = vH − b4 for any b ∈ (b3, b4] (54)

Type 2L:

(vL + α− b)[λL + λMG1M(b)] = λL(vL + α− vL) for any b ∈ [vL, b1] (55)
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Type 2M :

(vM + α− b)[λL + λMG1M(b)] = (λL + λM)(vM + α− b2) for any b ∈ [b1, b2] (56)
(vM + α− b)[λL + λM + λHG1H(b)] = (λL + λM)(vM + α− b2) for any b ∈ (b2, b3] (57)

Type 2H :

(vH + α− b)[λL + λM + λHG1H(b)] = vH + α− b4 for any b ∈ [b3, b4] (58)

Equilibrium rules out mass points at any b > vL, thus each c.d.f. needs to be continuous at

bids larger than vL, and using (55)-(56) we find that G1M is continuous at b = b1 if and only if
λLα

vL+α−b1 =
(λL+λM )(vM+α−b2)

vM+α−b1 , or

λLα(vM + α− b1) = (λL + λM)(vM + α− b2)(vL + α− b1) (59)

Likewise, (57)-(58) reveal that G1H is continuous at b = b3 if and only if
(λL+λM )(vM+α−b2)

vM+α−b3 =
vH+α−b4
vH+α−b3 , or

(λL + λM)(vM + α− b2)(vH + α− b3) = (vM + α− b3)(vH + α− b4) (60)

Likewise, (52)-(53) reveal that G2M is continuous at b = b2 if and only if
λL(vM−b1)
vM−b2 = vH−b4

vH−b2 , or

λL(vM − b1)(vH − b2) = (vH − b4)(vM − b2) (61)

Finally, G2H(b3) needs to be 0 and then (54) yields

b4 = λHvH + (λL + λM) b3 (62)

Inserting (62) into (59)-(61) we obtain three equations in the unknowns b1, b2, b3:

λLα(vM + α− b1)− (λL + λM)(vM + α− b2)(vL + α− b1) = 0 (63)

(λL + λM)(vM + α− b2)(vH + α− b3)− (vM + α− b3)((1− λH)(vH − b3) + α) = 0 (64)

λL(vM − b1)(vH − b2)− (λL + λM) (vH − b3) (vM − b2) = 0 (65)

The system of equations (62)-(65) characterizes the equilibrium values of b1, b2, b3, b4. In the next

step we prove that vL < b1 < b2 < b3 < b4 for a small α > 0, and here we show that these

inequalities imply that no incentive to deviate exists for any type, that is the strategies we have

described constitute a BNE.

First notice that the range of bids submitted by bidder 1 and by bidder 2 is [vL, b4], thus for

no type it is profitable to deviate with a bid below vL or above b4. Second, it is useful to take into

account fact (39).

Type 1L. Type 1L bids vL with probability one, which gives him payoff zero. Since u1L(b) < 0 if

bids b ∈ (vL, b4], he has no incentive to bid in (vL, b4].
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Type 1M . Type 1M plays a mixed strategy with support [vL, b2] and his payoff is λL(vM − b1).

If instead he bids b ∈ (b2, b4], then u1M(b) = (vH − b4)
vM−b
vH−b [in view of (53) and (54)], which is

decreasing in b since vM < vH . This gives type 1M no incentive to bid in (b2, b4].

Type 1H . Type 1H plays a mixed strategy with support [b2, b4] and his payoff is vH−b4. If instead
he bids b ∈ [vL, b2), then u1H(b) = λL(vM − b1)

vH−b
vM−b [in view of (51) and (52)], which is increasing

in b since vH > vM . This gives type 1H no incentive to bid in [vL, b2).

Type 2L. Type 2L plays a mixed strategy with support [vL, b1] and his payoff is λLα. If instead
he bids b ∈ (b1, b3], then u2L(b) = (λL + λM)(vM + α − b2)

vL+α−b
vM+α−b [in view of (56) and (57)],

which is decreasing in b since vL + α < vM + α. Moreover, if 2L bids b ∈ (b3, b4] then u2L(b) =

(vH + α − b4)
vL+α−b
vH+α−b , which is decreasing in b since vL + α < vH + α. Therefore type 2L has no

incentive to bid in (b1, b4].

Type 2M . Type 2M plays a mixed strategy with support [b1, b3] and his payoff is (λL+λM)(vM+α−
b2). If instead he bids b ∈ [vL, b1), then u2M(b) = λLα

vM+α−b
vL+α−b [in view of (55)], which is increasing

in b since vM+α > vL+α. Moreover, if 2M bids b ∈ (b3, b4] then u2M(b) = (vH+α−b4)vM+α−bvH+α−b [in

view of (58)], which is decreasing in b since vM + α < vH + α. Therefore type 2M has no incentive

to bid in [vL, b1) or in (b3, b4].

Type 2H . Type 2H plays a mixed strategy with support [b3, b4] and his payoff is vH + α − b4. If

instead he bids b ∈ [vL, b1], then u2H(b) = λLα
vH+α−b
vL+α−b [in view of (55)], which is increasing in b since

vH + α > vL + α. Moreover, if 2H bids b ∈ (b1, b3), then u2H(b) = (λL + λM)(vM + α− b2)
vH+α−b
vM+α−b

[in view of (56) and (57)], which is increasing in b since vH + α > vM + α. Therefore type 2H has

no incentive to bid in [vL, b3).

12.4.2 Step 2: For a small α > 0, the inequalities vL < b1 < b2 < b3 < b4 hold

In the following we use ∆ ≡ vM−vL > 0 and t ≡ 1
∆(vH−vM) > 0. The values of b1, b2, b3, b4 depend

on α, and therefore we write b1(α), b2(α), b3(α), b4(α). When α = 0 we obtain the symmetric setting,

with b1(0) = vL, b2(0) = b3(0) = vL+
λM∆

λL+λM
, b4(0) = vL+(λM +λH + tλH)∆. We investigate how

b1, b2, b3, b4 depend on α, for a small α > 0, by applying the implicit function theorem to (63)-(65) at

α = 0, b1 = vL, b2 = b3 = vL+
λM∆

λL+λM
; in this way we obtain b01(0), b

0
2(0), b

0
3(0), b

0
4(0). To this purpose

we denote the left hand sides of (63),(64),(65) with f1(b1, b2, b3, α), f2(b1, b2, b3, α), f3(b1, b2, b3, α),

respectively. Then we obtain

∂f1
∂b1

= λMα+ (λL + λM)(vM − b2),
∂f1
∂b2

= (λL + λM)(vL + α− b1),
∂f1
∂b3

= 0,

∂f1
∂α

= −λM(vM + 2α− b1)− (λL + λM)(vL − b2),
∂f2
∂b1

= 0,
∂f2
∂b2

= −(λL + λM)(vH + α− b3),

∂f2
∂b3

= (1− λH)(vH + b2 − 2b3) + α,
∂f2
∂α

= b3 − λH(2α+ vM)− (1− λH)b2

∂f3
∂b1

= −λL(vH − b2),
∂f3
∂b2

= −λL(vM − b1) + (λL + λM) (vH − b3)

∂f3
∂b3

= (λL + λM) (vM − b2),
∂f3
∂α

= 0
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We evaluate these derivatives at α = 0, b1 = vL, b2 = b3 = vL +
λM∆

λL+λM
and find⎡⎢⎣ b01(0)

b02(0)

b03(0)

⎤⎥⎦ = −

⎡⎢⎣ λL∆ 0 0

0 − (λL + tλL + tλM)∆ (λL + tλL + tλM)∆

−λL(λL+tλL+tλM )
λL+λM

∆ t (λL + λM)∆ λL∆

⎤⎥⎦
−1 ⎡⎢⎣ 0

− λLλH
λL+λM

∆

0

⎤⎥⎦

=

⎡⎢⎢⎣
0

− λ2LλH
(λL+λM )(λL+tλL+tλM )

2

λLλHt
(λL+tλL+tλM )

2

⎤⎥⎥⎦
Using (62) we see that b04(0) =

(λL+λM )λLλH t

(λL+tλL+tλM )
2 . In next step we use b01(0), b

0
2(0), b

0
3(0), b

0
4(0) to derive

dRF

dα

¯̄̄
α=0

. However, b01(0) does not reveal that b1 > vL. To this purpose we differentiate (63) twice

with respect to α to obtain

λL[2−b01(α)]−(λL+λM){−b002(α)[vL+α−b1(α)]+2[1−b02(α)][1−b01(α)]−b001(α)[vM+α−b2(α)]} = 0
(66)

Evaluating (66) at α = 0 yields (λL+λM)[vM − b2(0)]b001(0)−2λM +2(λL+λM)b
0
2(0) = 0, and thus

b001(0) =
2

λL∆
(λM +

λ2LλH
(λL+tλL+tλM )2

) > 0. As a consequence b1(α) > vL for a small α > 0.

12.4.3 Step 3: Evaluation of dRF

dα

¯̄̄
α=0

We define Gi(b) as λLGiL(b) + λMGiM(b) + λHGiH(b) for i = 1, 2, so that G(b) = G1(b)G2(b) is

the c.d.f. of the winning bid. In particular, from (51)-(58) we obtain

G(b) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[λL + λMG1M(b)]λLG2L(b) = λ2L

α
vL+α−b

vM−b1(α)
vM−b if b ∈ [vL, b1(α))

[λL + λMG1M(b)][λL + λMG2M(b)] = (λL + λM)λL
vM+α−b2(α)
vM+α−b

vM−b1(α)
vM−b if b ∈ [b1(α), b2(α))

[λL + λM + λHG1H(b)][λL + λMG2M(b)] = (λL + λM)
vM+α−b2(α)
vM+α−b

vH−b4(α)
vH−b if b ∈ [b2(α), b3(α))

[λL + λM + λHG1H(b)][λL + λM + λHG2H(b)] =
vH+α−b4(α)
vH+α−b

vH−b4(α)
vH−b if b ∈ [b3(α), b4(α)]

Since

RF = vLG(vL) +

Z b4(α)

vL

bdG(b) = b4(α)−
Z b4(α)

vL

G(b)db

= b4(α)−
Z b1(α)

vL

λ2Lα[vM − b1(α)]

(vL + α− b)(vM − b)
db−

Z b2(α)

b1(α)

(λL + λM)λL[vM + α− b2(α)][vM − b1(α)]

(vM + α− b)(vM − b)
db

−
Z b3(α)

b2(α)

(λL + λM)[vM + α− b2(α)][vH − b4(α)]

(vM + α− b)(vH − b)
db−

Z b4(α)

b3(α)

[vH + α− b4(α)][vH − b4(α)]

(vH + α− b)(vH − b)
db

we can use this expression to evaluate dRF

dα

¯̄̄
α=0

.

• The derivative of
R b1(α)
vL

λ2L
α[vM−b1(α)]

(vL+α−b)(vM−b)db with respect to α is

λ2L(
α

vL + α− b1(α)
b01(α) +

Z b1(α)

vL

[vM − b1(α)− αb01(α)](vL + α− b)− α[vM − b1(α)]

(vM − b)(vL + α− b)2
db)

and at α = 0 it boils down to 0.
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• The derivative of (λL + λM)λL
R b2(α)
b1(α)

[vM+α−b2(α)][vM−b1(α)]
(vM+α−b)(vM−b) db with respect to α is

(λL+λM)λL

Ã
vM−b1(α)
vM−b2(α)b

0
2(α)−

vM+α−b2(α)
vM+α−b1(α)b

0
1(α)

+
R b2(α)
b1(α)

{[1−b02(α)][vM−b1(α)]−b01(α)[vM+α−b2(α)]}(vM+α−b)−[vM+α−b2(α)][vM−b1(α)]
(vM−b)(vM+α−b)2 db

!

and at α = 0 it boils down to λ2M (λL+tλL+tλM )
2−2λ3LλH

2(λL+tλL+tλM )
2 .

• The derivative of (λL + λM)
R b3(α)
b2(α)

[vM+α−b2(α)][vH−b4(α)]
(vM+α−b)(vH−b) db with respect to α is

(λL+λM)

Ã
[vM+α−b2(α)][vH−b4(α)]
[vM+α−b3(α)][vH−b3(α)]b

0
3(α)−

vH−b4(α)
vH−b2(α)b

0
2(α)

+
R b3(α)
b2(α)

1
vH−b

{[1−b02(α)][vH−b4(α)]−[vM+α−b2(α)]b04(α)}(vM+α−b)−[vM+α−b2(α)][vH−b4(α)]
(vM+α−b)2 db

!

and at α = 0 it boils down to (λL+λM )λHλL
λL+tλL+tλM

.

• The derivative of
R b4(α)
b3(α)

[vH+α−b4(α)][vH−b4(α)]
(vH+α−b)(vH−b) db is

b04(α)−
[vH + α− b4(α)][vH − b4(α)]

[vH + α− b3(α)][vH − b3(α)]
b03(α)

+

Z b4(α)

b3(α)

{[vH − b4(α)][1− 2b04(α)]− αb04(α)}(vH + α− b)− [vH + α− b4(α)][vH − b4(α)]

(vH − b)(vH + α− b)2
db

and at α = 0 it boils down to λ2HλL(λL+λM )t

(λL+tλL+tλM )
2+

λ2H(tλL+tλM−λL)
2

2(λL+tλL+tλM )
2 , which is equal to λ2H

(λL+λM )
2t2+λ2L

2(λL+tλL+tλM )
2 .

Therefore

dRF

dα

¯̄̄̄
α=0

=
(λL + λM)λHλLt

(λL + tλL + tλM)2
− λ2M(λL + tλL + tλM)

2 − 2λ3LλH
2(λL + tλL + tλM)2

− (λL + λM)λHλL
λL + tλL + tλM

−λ2H
(λL + λM)

2t2 + λ2L
2(λL + tλL + tλM)2

=
−(λ2H + λ2M) (λL + λM)

2 t2 + 2λL (λL + λM) (λ
2
H − λ2M)t− λ2L (1− λL)

2

2(λL + tλL + tλM)2

12.4.4 Step 4: d(RS−RF )
dα

¯̄̄
α=0

> 0

It is straightforward to see that

RS = λLvL + λMλL(vL + α) + λM(λM + λH)vM + λHλL(vL + α) + λHλM(vM + α) + λ2HvH

= vL + ((λM + λH)
2 + λ2Ht)∆+ (λHλL + λLλM + λHλM)α

and thus dRS

dα = λHλL + λLλM + λHλM > 0. The inequality d(RS−RF )
dα

¯̄̄
α=0

> 0 is equivalent to

λHλL + λLλM + λHλM +
(λ2H + λ2M)(1− λH)

2t2 − 2λL(1− λH)(λ
2
H − λ2M)t+ λ2L(1− λL)

2

2(λL + tλL + tλM)2
> 0

After suitable manipulations, the left hand side of this inequality is written as (1−λ
2
L)(λL+λM )

2

2(λL+tλL+tλM )2
[t−

λL(2λ
2
H+λ

2
L−1)

(1−λ2L)(λL+λM )
]2 +

λHλ2L[2λH(1−λ2L−λ2H)+λM (1−λ2L)]
(λL+tλL+tλM )2(1−λ2L)

, which is positive.
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