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Abstract

I introduce an optimizing monopolistic market maker in an otherwise standard
setting a la Brock and Hommes (1998) (BH98). The market maker manages her
inventory of a zero yielding asset, such as foreign currency, and can earn profits from
trading, taking advantage of her knowledge of speculators’ demand. The resulting
dynamic behavior is qualitatively identical to the one described in BH98, showing
that the results of the latter are independent from the institutional framework of
the market. At the same time I show that the market maker has conflicting effects.
She acts as a stabilizer when she allows for market imbalances, while she acts as
a destabilizer when she manages aggressively her inventories and when she trades
actively, both if she acts as fundamentalist or if she is a strong extrapolator. Indeed
the more stable institutional framework is one in which market makers are inventory
neutral and don’t trade actively but, even in this case, the typical complex behavior
of BH98 occurs.

Keywords: Asset pricing model, heterogeneous beliefs, market architecture, mar-
ket making, foreign exchange market.

JEL codes: G12, D84, D42, C62, F31

1



1 Introduction

Models of financial markets with heterogeneous bounded rational speculators generally

come in two flavors. The seminal model of Brock and Hommes (1998) makes the standard

assumption of market clearing. Other models assume instead the existence of a market

maker, which accumulates inventories and adjusts the price in the same direction of net

demand following a simple linear rule (Day and Huang, 1990; Lux, 1995).

The market maker hypothesis is widely employed in analyses of the FX market, since

it is considered a better description of the actual price adjustment mechanism, given the

pivotal role of dealers in what is a substantially decentralized market (Westerhoff, 2009).

The standard linear adjustment rule, which is generally used in these models, might lead

to large inventory unbalances. This implication is inconvenient, since the empirical evi-

dence shows that FX dealers actively manage their inventories in order to end the trading

day on a balanced position (Manaster and Mann, 1996; Bjønnes and Rime, 2005). West-

erhoff (2003) incorporates inventory management in the price adjustment rule, showing

that a more aggressive control of inventories makes the market more volatile and less

stable. Carraro and Ricchiuti (2015) and Zhu et al. (2009), following Madhavan and

Smidt (1991), extend this framework by considering market makers who take speculative

positions by adjusting their inventories towards a given exogenous target.

This paper presents a model which incorporates a more sophisticated representation

of the behavior of the market maker than the current literature on HAM (Heteroge-

neous Agents Models). In particular, I suppose that there are two types of speculators

(fundamentalists and chartists) who submit their trades to a monopolistic market maker

who is an optimizing bounded rational agent. I further suppose that the market maker

knows the optimal demand of speculators, in accordance with the fact that “knowing the

market” is the most important asset for FX dealers (see Sec. 2). In a first version of

“pure” market making, her only source of profits comes from market making itself, thus

she sets her optimal price solving the trade off between higher income per traded unit
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and decreasing marginal inventory costs on the one hand, and lower net demand on the

other. The second version includes an “activist” market maker who is allowed to trade

with bounded rational expectations.

This paper relates to previous HAMs, and in particular to Hommes et al. (2005),

who extend the BH98 framework to a market maker scenario, using a linear adjustment

rule, and prove that the dynamic behavior of the system is pretty similar to BH98. We

confirm this result in our framework while, on the other hand, we show that the market

maker has conflicting effects on the stability of the market. From this perspective, the

description of the market maker in this paper is closer to the one of Zhu et al. (2009) and

Carraro and Ricchiuti (2015), who model explicitly the role of the market maker as an

active investor and also underline that the market maker destabilizes the market when

she manages her inventory. On the other hand, these models don’t derive the pricing

rule from an optimizing behavior of the market maker as I do in this paper. Instead they

introduce an ad hoc pricing mechanism.

Zhu et al. (2009) and Carraro and Ricchiuti (2015) provide analytical results for fixed

proportions of speculators, while the results of the following sections are derived using

the heuristic switching mechanism of BH98 which allows these proportions to evolve

endogenously. Anufriev and Panchenko (2009) provide through simulations a comparison

of different market protocols (Walrasian auctioneer, market maker, batch auction and

order book) allowing for the endogenous evolution of the proportions of speculators. They

show that, no matter which type of market clearing is used, two different regimes with

completely different dynamical properties occur depending on the value of the intensity

of choice, and that the trading protocol strongly affects the critical value of the intensity

of choice. Since I derive the market clearing case of BH98 as a special case of the

model presented in this paper, it becomes possible to prove analytically that the trading

protocol affects the critical values of the intensity of choice, which separate the two

different dynamic regimes.

The remaining of this paper is organized as follows. In sec. 2 I relate the hypotheses
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adopted in this paper to the literature on the microstructure of FX markets. In sec. 3 I

present the model with a “pure” market maker, and in sec. 4 the model with an “activist”

market maker. Sec. 5 concludes.

2 Related Literature

According to the market microstructure literature, net order flows are strong predictors

of exchange rate movements. Foreign exchange dealers believe that private information

is crucial to operate on the exchange rate market and that trading flows collected from

customers aggregate dispersed information (King et al., 2013). On the other hand, the

possibility of private information in the FX market has been questioned since the funda-

mental value of a currency is determined by macroeconomic information (e.g. regarding

interest rates or inflation) which is publicly available. Indeed the empirical evidence of

an informational advantage on the FX market relates to specific situations such as cen-

tral bank intervention on the currency market (Peiers, 1997). Instead, insider models like

Kyle (1985) or Glosten and Milgrom (1985) draw their inspiration from the stock market,

where a privileged access to information is more likely to occur. According to Glosten and

Milgrom (1985), market spreads exists because market makers face an adverse selection

problem and set the spread in order to recoup with liquidity traders the losses incurred

when trading with informed counterparts. One major problem with these models is that

market makers earn zero profits, thus they would have no incentive to perform their role.

Their purpose is to explain the bid-ask spread as an informational phenomenon which

would persist even when market makers make no profits.

But what is the source of private information on the FX market if fundamentals

are common knowledge? One possible answer is that private information that is most

valuable does not concern fundamentals. One source of non fundamental information,

according to King et al. (2013), stems from demand and supply themselves. If they

have only finite elasticity, i.e. if the liquidity of markets is limited, market makers can
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leverage on their role to make profits. Following this line, Cai et al. (2001) show with

high frequency data that customer order flows have an influence on rates distinct from

macroeconomic announcements. Thus the anticipation of public announcements is not

the only potential source of private information on the foreign exchange market.

This line of thought leads us to the next problem, namely: who is informed on the

FX market? Using a detailed breakdown of customer typologies, Osler and Vandrovych

(2009) show that only leveraged investors bring information to the market. All other

types of customers appear to be uninformed, while banks themselves appear to be better

informed than their customers. Specifically, the price impact of bank trades remains

strong for up to one week, while the price impact of leveraged-investors loses significance

after six hours.

These result confirm the common view among FX dealers that big banks are better

informed because they trade with the biggest customers (Cheung and Chinn, 2001). The

intuition is that banks, by servicing their customers, collect dispersed information from

the market which they put to a good use for their own trades. This view is supported also

by the empirical evidence that spreads are narrower for financial customers and for larger

trades (Osler et al., 2011). This stylized fact is inconsistent with adverse selection models

like Kyle (1985) or Glosten and Milgrom (1985), according to which market makers should

charge larger spreads to the most informed traders and on larger trades, which are more

likely to be originated from informed counterparts. To motivate this pricing choice we

must refer to factors like market power and strategic dealing. According to this view,

FX dealers choose to attract large order flows by selectively setting competitive quotes

in order to understand promptly the direction of the market.

The opportunity of profits for dealers arise because FX is a two-tier market and

dealers may use the information gathered with customers in the first tier to profit from

interdealer trades in the second tier. For instance, the results of Osler et al. (2011)

show that dealers are more likely to trade aggressively on the interdealer market after

trades with informed counterparts. We might wonder what would be the optimal pricing
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and trading strategy for a dealer under these circumstances. Empirical evidence shows

that FX dealers unload inventories quickly and do no adjust their quotes following an

inventory unbalance (Bjønnes and Rime, 2005). Current theoretical models distinguish

between problems of inventory management and of adverse selection. In inventory-based

models, risk-averse market makers adjust prices to induce a trade in a certain direction

(Ho and Stoll, 1981; Huang and Stoll, 1997; Madhavan and Smidt, 1991). For instance,

a FX dealer with a long position in USD may reduce his ask to induce a purchase of

USD by his counterparts. Information-based models predict instead that, when a market

maker receives a trade initiative from a counterpart she deems as informed, she will raise

or lower her price quote conditioned on whether the initiative ends with a “Buy” or a

“Sell”.

Both categories of models agree on the prediction that buyer-initiated trades will

make the market maker raise prices, while seller-initiated trades will have the opposite

effect. But both categories are at odds with the empirical evidence mentioned above,

which instead points to the idea that FX dealers leave the price unchanged and profit

from the future movement of price by trading as quickly as possible in the same direction

of their incoming trades. An optimal trading strategy of this sort is derived in the widely

considered model of Evans and Lyons (2002) and is linked to the so called “hot potato

trading” on the interdealer market (Lyons, 1997), i.e. the passing through of undesired

inventory positions among FX dealers. Consistently with this view, Manaster and Mann

(1996) conclude that market makers have informational advantages that enable them to

adjust their inventory in anticipation of favorable price movements and Bjønnes and Rime

(2005) find evidence that FX dealers engage in information-based speculation.

To sum up, evidence collected from FX market data shows that market making is a

valuable source of information for taking speculative positions and that large financial

entities like banks seek actively and employ extensively this sort of information. In this

paper I try to incorporate this evidence by making the admittedly simplifying assumption

that the market maker has perfect knowledge of customer demand.
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This assumption do not exclude that market imbalances affect prices. In order book

markets like the interdealer FX market, an excess of trading in one direction impacts

price since liquidity is not unlimited, and price variations on the wholesale market will

quickly transmit to prices charged to customers. In the model of Evans and Lyons (2002)

noise traders or ’profit takers’ enter to clear the market and allow FX dealers to profit

from end-of-day trades after a price adjustment occurs on the interdealer market which

is transmitted to the retail market. In this paper, I suppose the market maker is able to

satisfy the net demand coming from customers by adjusting in advance her inventory at

the current price, i.e. before she announces the new optimal price to her customers and

trading with speculators begins.

3 Model with a “pure” market maker

I assume that the market maker is a monopolist which trades a zero yielding asset with

a large number of different types of speculators whose weights on the market evolve

endogenously. In each period, she fixes an optimal price, taking into account a quadratic

cost of inventory maintenance. I further assume that the market maker knows the optimal

demand of each type of speculator and that she employs this information when she solves

her objective. Then I suppose that the market is liquid enough to allow the market maker

to adjust in advance her inventory at the current market price, in order to match the

projected orders of speculators. Once the new price is revealed to speculators, the latter

trade according to their optimal demand in such a way that, at the end of the period,

the net variation of the inventory position of the market maker is zero.

The timeline of events in each period of the model is pictured in Fig. 1. We remark

that the assumption on market liquidity is analogous to the one made by Evans and

Lyons (2002), who suppose that FX dealers might trade on the wholesale market before

the price adjustment on the retail market occurs. It is also in line with evidence from

the FX market (see Sec. 2) and in particular with the practice of “hot potato” trading
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MM fixes pt

MM adjusts 
her inventory
to match projected speculators'
orders by buying / selling
at the current price pt-1

MM announces pt

to the speculators

Speculators post
their orders

Trading brings
MM inventory
to zero

Figure 1: Timeline of events occuring within a single period of the model.

which allows FX dealers to profit from retail trading.

Recalling that we are considering the case of a zero yielding asset, the wealth of the

market maker evolves according to the following equation:

Wd,t = RWd,t−1 + (pt − pt−1)
H−1∑

h=0

nh,tzh,t − ω
(
H−1∑

h=0

nh,tzh,t

)2

(1)

where zh,t is the demand of speculators of type h and nh,t = e
β Uh,t−1

Zt
is the fraction of

speculators of type h. In this formula Zt is a normalization factor and

Uh,t−1 = (pt−1 −Rpt−2) zh,t−2 − Ch (2)

is the fitness of the trading strategy h, where Ch is a type specific fixed cost. The

market maker adjusts the spread pt−pt−1 she charges to speculators in order to maximize

her wealth at t. At the same time, she bears an increasing marginal cost for carrying

the inventory, which is equal to the projected demand of speculators and is entirely

liquidated by the end of the period, as explained above, since the market maker has a

perfect knowledge of market demand.

The wealth of speculators of type h evolves in a standard way:

Wh,t = RWh,t−1 + (pt −Rpt−1) zh,t−1 (3)
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Both the speculators and the market maket act to maximize their wealth. Speculators

are mean-variance maximizers, since their future wealth is uncertain. Indeed their wealth

at t is determined by their net demand at t− 1 and they ignore the future market price

at t when taking their decision at t − 1. The market maker instead is not subject

to uncertainty. Moreover she is aware of the optimal demand of speculators z∗h,t when

she optimizes. This assumption is consistent with the monopoly position which market

makers have, especially on markets where the largest part of transations are over the

counter, like the FX market (see sec. 2).

It is convenient to rewrite both problems in terms of deviations from a fundamental

value xt = pt − p∗t . In the case of speculators it is possible to do so by assuming the

standard pricing relationship p∗t = Et[p
∗
t+1]/R. The expectation of speculators of type h

on xt is Eh [xt+1] = bh + ghxt−1. The objectives are respectively

• Dealers:

max
xt



(xt − xt−1)

H−1∑

h=0

nh,tz
∗
h,t − ω

(
H−1∑

h=0

nh,tz
∗
h,t

)2


 (4)

• Speculators of type h:

max
zh,t

{
(bh + ghxt−1 −Rxt) zh,t −

z2h,t
2D

}
(5)

The optimal demand of speculators of type h is the standard one:

z∗h,t = D (bh + ghxt−1 −Rxt) (6)

Substituting eq. (6) in (4) and deriving we obtain the FOC for market maker which

can be solved for xt:

xt =
1

DRω + 1

{
xt−1

2
+

(
Dω +

1

2R

)H−1∑

h=0

[(bh + ghxt−1)nh,t]

}
(7)

In the two type case of fundamentalists (g0 = 0,b0 = 0, C0 = C > 0) and chartists
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(g1 = g > 0,b1 = 0,C1 = 0) eq. (7) becomes

xt =
1

DRω + 1

[
1

2
+ g

(
Dω +

1

2R

)
n1,t

]
xt−1 (8)

In this case n1,t, after replacing zht with (8) reads as follows:

n1,t =
1

e−β[Dg(Rxt−2−xt−1)xt−3−C] + 1
(9)

It is convenient to introduce mt ≡ n0,t − n1,t. Then eq. (8) becomes

xt =
1

DRω + 1

[
1

2
− g

(
Dω +

1

2R

)(
mt−1 − 1

2

)]
xt−1 (10)

where

mt−1 = tanh

(
β

2
[Dgc (Rxt−2 − xt−1)xt−3 − C]

)
(11)

The market clearing case of BH98 is obtained for ω →∞:

xt = − g

2R
(mt−1 − 1)xt−1 (12)

The fundamental steady state solution x = 0 becomes unstable due to a pitchfork

bifurcation which occurs when the following condition holds

g = R
(
1 + e−Cβ

)
(13)

In particular, the following lemma holds:

Lemma 1. (Existence and stability of steady states). Let mf = tanh
(
−βC

2

)
, mnf = 1− 2R

g

and x∗ be the positive solution (if it exists) of tanh
[
β
2

(Dg (R− 1)x2 − C)
]

= mnf . Then:

1. For 0 < g < R the fundamental equilibrium E0 = (0,mf ) is the unique, globally

stable steady state
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2. For g ≥ 2R the fundamental equilibrium is locally unstable and two other steady

states exists: E1 = (x∗,mnf ) and E2 = (−x∗,mnf )

3. For R < g < 2R there exists β∗ = 1
C

log
(

1
g/R−1

)
∈ (0,∞) such that

(a) if β < β∗ the fundamental equilibrium E0 = (0,mf ) is the unique, globally

stable steady state

(b) if β > β∗ the fundamental equilibrium is locally unstable and two other steady

states exists: E1 = (x∗,mnf ) and E2 = (−x∗,mnf )

(c) if β = β∗ the fundamental and non fundamental equilibria coincide

With Lemma 1 we recover the result of BH98, Lemma 2, which is obtained under

the assumption of market clearing. Thus we see that the institutional framework of the

market has no effect on the existence of non fundamental equilibria and on the stability

of the fundamental equilibrium. In particular, the existence and stability of the steady

states in BH98 does not depend on the assumption of market clearing. Moreover, the

value of β∗ is independent from the market setting.

The equivalent of lemma 3 in BH98 shows that there exists a critical value β∗∗ above

which the two non fundamental steady states become themselves unstable:

Lemma 2. (Secondary Bifurcation). Let E1 and E2 be the non fundamental steady states

as in Lemma 1. Assume R < g < 2R and C > 0 and let β∗ be the pitchfork bifurcation

value. Further suppose that R ∈
(
1, 4

3

]
. Then there exists β∗∗ such that E1 and E2 are

stable for β∗ < β < β∗∗ and unstable for β > β∗∗. For β = β∗∗ E1 and E2 exhibit a Hopf

bifurcation.

The numerical analysis of the value of the discriminant of the characteristic equation

of the system at the non fundamental steady states and the numerical computation of

its solutions show that there is an interval of values of β in which the discriminant is

negative and thus there exists two conjugate complex roots which cross the unit circle
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at a value β∗∗ (Fig. 2). From the bifurcation plot (Fig. 3) we see that at β∗∗ the non

fundamental steady state becomes unstable and that for higher values of β we observe an

oscillating behavior between the fundamental and non fundamental steady states. The

resulting dynamics is qualitatively identical to the 3-D system in BH98.

Differently from the 2-D system of Hommes et al. (2005), which considers the hypoth-

esis of market making under a different framework, the critical value β∗ in the present

model remains the same of BH98. On the other hand, we see from Fig. 2 that β∗∗ is

decreasing in ω. In other terms, the likelihood that the market will settle at the non

fundamental price is lower in the market clearing case (ω →∞). Simmetrically, the more

the market maker is inventory neutral (ω → 0), the more the market is likely to settle at

the non fundamental steady state.
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(a) ω = 1
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(b) ω →∞

Figure 2: Solutions of the characteristic equation with D = C = 1, R = 1.03, g = 1.05
and β∗ = 3.94 ≤ β ≤ 8
.

BH98 prove for β → ∞ that, if g > R2, the dynamic system is unstable (lemma 4).

In our case it’s possible to prove the following:

Lemma 3. Assume C > 0 and β → ∞. For g > R the fundamental steady state
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Figure 3: (a) Bifurcation diagram with 3 ≤ β ≤ 8 and (b) periodic orbit for β = 6. The
value of the other parameters are fixed as in Fig. 2, panel (a). The red crosses stand for
the value of the non fundamental solution x∗ obtained from eq. (24)

E0 = (0,−1) is locally unstable, with eigenvalues 0 and R+(2DRω+1)g
2R(DRω+1)

. Let’s fix ḡ0 =

R(2DR2ω+2R−1)
2DRω+1

. There are two possibilities for the unstable manifold W u(E0):

1. if g > ḡ0 then W u(E0) equals the unstable eigenvector

2. if R < g < ḡ0 then W u(E0) is bounded and all orbits converge to E0

We see from Fig. 4 that the threshold g0 is decreasing in ω. This contrasts with the

previous result: if the existence of periodic or quasi-periodic orbits does not depend on

the institutional arrangement of the market, their stability depends on the behavior of

the market maker. We recover the result of BH98 considering the limit ω → ∞, where

ḡ0 = R2. Instead for ω → 0 we obtain the upper bound ḡ0 = R(2R − 1). Thus the

activity of the market maker, which absorbs the imbalance of supply and demand, makes

the market less likely to suffer from severe instability which might call for an external

intervention. Needless to say, this external intervention might be nevertheless required

in order to support the market maker in her role under circumstances of severe market

13



stress.
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Figure 4: g0 for different values of ω. The values of the other parameters are: D = 1,
R = 1.03.

4 Model with an “activist” market maker

We extend the previous model supposing that the market maker acts as a mean-variance

optimizing speculator too. Her objective becomes

max
xt,yt



(xt − xt−1)

H−1∑

h=0

nh,tz
∗
h,t − ω

(
H−1∑

h=0

nh,tz
∗
h,t

)2

+ (gd −R)xtyt −
y2t
2D



 (14)

where yt represents the speculative demand of the market maker at t and gd is her

extrapolation parameter for the future price deviation, i.e. Ed[xt+1] = gdxt. Substituting

(6) in (14) and deriving for xt and yt we obtain the FOCs. In particular from the FOC

with respect to yt we obtain the optimal trading strategy:

yt = D (gd −R)xt (15)
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Thus the market maker will trade in the same direction of xt if the extrapolative

component of her expectation is strong enough. Substituting (15) in the other FOC and

solving for xt we obtain the following price equation:

xt =
Rxt−1 + (2DRω + 1)

∑H−1
h=0 (bh + ghxt−1)nh,t

2R (DRω + 1)− (R− gd)2
(16)

In the two type case of fundamentalists (g0 = 0,b0 = 0, C0 = C > 0) and chartists

(g1 = gc > 0,b1 = 0,C1 = 0) eq. (16) becomes

xt =
R + gc (2DRω + 1) n1,t

2R (DRω + 1)− (R− gd)2
xt−1 (17)

where n1,t is still given by eq. (9). After having replaced n1,t = 1−mt
2

we obtain

xt =
R− gc (2DRω + 1)

mt−1 − 1

2
2R (DRω + 1)− (R− gd)2

xt−1 (18)

where mt−1 is still given by eq. (11). The BH98 equation (12) is obtained for ω →∞

and gd → R, i.e. when the market maker doesn’t accumulate inventories and doesn’t

trade (see eq. (15)). The fundamental steady state solution x = 0 becomes unstable due

to a pitchfork bifurcation which occurs when the following condition holds

gc =
(
1 + e−βC

)(
R− (gd −R)2

2DRω + 1

)
(19)

In particular, the following lemma holds.

Lemma 4. (Existence and stability of steady states). Let

mnf = 1− 2R

gc
+

2 (R− gd)2
gc (2DRω + 1)

and x∗ be the positive solution (if it exists) of tanh
[
β
2

(Dg (R− 1)x2 − C)
]

= mnf . Fur-

ther suppose that gd ∈
(
R−

√
R(2DRω + 1), R +

√
R(2DRω + 1)

)
. Then:
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1. For 0 < gc < R − (R−gd)2
(2DRω+1)

the fundamental equilibrium E0 = (0,mf ) is the unique,

globally stable steady state

2. For gc > 2
[
R− (R−gd)2

(2DRω+1)

]
the fundamental equilibrium is locally unstable and two

other steady states exist: E1 = (x∗,mnf ) and E2 = (−x∗,mnf )

3. For 0 ≤ R − (R−gd)2
(2DRω+1)

< gc < 2
[
R− (R−gd)2

(2DRω+1)

]
there exists β∗ = 1

C
log
(

1−mnf
1+mnf

)
≥ 0

such that

(a) if β < β∗ the fundamental equilibrium E0 = (0,mf ) is the unique, globally

stable steady state

(b) if β > β∗ the fundamental equilibrium is locally unstable and two other steady

states exist: E1 = (x∗,mnf ) and E2 = (−x∗,mnf )

(c) if β = β∗ the fundamental and non fundamental equilibria coincide

We see that β∗ is increasing in ω and converges to β∗ = 1
C

log
(

1
gc/R−1

)
for ω → ∞

(see fig. 5, panel (a)). In this limit we recover the result of BH98 and of Sec. 3. This

means that, the more the market maker is oriented against holding inventories, the more

she can compensate for her own trading activity and try to keep the market anchored to

the fundamental equilibrium. Except that in the limit ω →∞, an activist market maker

is more likely to make the market evolve towards a non fundamental steady state than

a passive market maker or a Walrasian auctioneer. In particular, in the limit ω → 0 we

obtain a nonnegative lower bound for β∗:

lim
ω→0

β∗ =
1

C
log

(
1

gc
R−(R−gd)2 − 1

)
(20)

From fig. 5 we see also that β∗ is increasing in gd up to gd = R and decreasing for

gd > R. Thus the effect of an increasingly extrapolative chartist market maker on market

stability is nonlinear: stabilizing for gd < R and destabilizing for gd > R. When gd = R,

we recover again the same β∗ of BH98 and of Sec. 3. For any other gd 6= R we have
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instead that β∗ is lower than in those two models. Thus an activist market maker makes

the market less stable than a passive market maker except when gd = R. In this case

we recover the same level of stability of Sec 3 indeed because the market maker is not

trading at all (see eq. (15)). Moreover, the effect of a chartist market maker is to improve

the stability of the market with respect to a fundamentalist market maker (gd = 0) for

any gd ∈ (0, 2R). From eq. (15) we see that a fundamentalist market maker trades in

the opposite direction of speculators and this might explain the negative effect on market

stability.
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Figure 5: Value of β∗ for different values of ω and gd. The other parameters are fixed at
the following values: D = C = 1, R = 1.03, gc = 1.05.

Lemma 5. (Secondary Bifurcation). Let E1 and E2 be the non fundamental steady

states as in Lemma 4. Assume 0 ≤ R − (R−gd)2
(2DRω+1)

< gc < 2
[
R− (R−gd)2

(2DRω+1)

]
and C > 0

and let β∗ ≥ 0 be the pitchfork bifurcation value. Further suppose that R ≤ 4
3

and

gd ∈
(
R−
√

2R,R +
√

2R
)

. Then there exists β∗∗ such that E1 and E2 are stable for

β∗ < β < β∗∗ and unstable for β > β∗∗. For β = β∗∗ E1 and E2 exhibit a Hopf bifurcation.

The numerical analysis of the discriminant of the characteristic equation at the non

fundamental steady states and the numerical computation of its solutions yield essentially
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the same results of the previous model. There is an interval of values of β in which the

discriminant is negative and thus there exist two conjugate complex roots which cross

the unit circle at a value β∗∗. At this critical value the non fundamental steady state

becomes unstable and for higher values of β we observe an oscillating behavior between the

fundamental and non fundamental steady states. The resulting dynamics is qualitatively

identical to the 3-D system in BH98. We remark that, using the same parameter values

ω = D = C = 1 and R = 1.03, plus gd = 1.05 we obtain that the critical values β∗∗

are lower than in Sec. 3 (Fig. 2). Moreover, β∗∗ is decreasing in ω and thus the same

considerations apply, namely that market making is making the non fundamental steady

states more likely to be unstable.
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Figure 6: Solutions of the characteristic equation with D = C = 1, R = 1.03, gc = 1.05,
gd = 1.1 and β∗ = 3.86 ≤ β ≤ 8.
.

The equivalent of Lemma 3 of Sec. 3 is stated as follows:

Lemma 6. Assume C > 0, gd ∈
(
R−

√
R(2DRω + 1), R +

√
R(2DRω + 1)

)
and

β → ∞. Suppose that gc > R − (R−gd)2
(2DRω+1)

≥ 0 so that the fundamental steady state

E0 = (0,−1) is locally unstable. Let’s fix ḡ1 = R
2DRω+1

[
2R (DRω + 1)− (R− gd)2 − 1

]
.
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There are two possibilities for the unstable manifold W u(E0):

1. if gc > ḡ1 then W u(E0) equals the unstable eigenvector

2. if R− (R−gd)2
(2DRω+1)

< gc < ḡ1 then W u(E0) is bounded and all orbits converge to E0

From Fig. 7 we see that the effect of ω is the same of the previous model, thus market

making still has a stabilizing effect compared to market clearing. On the other hand we

see from panel (b) that the speculative activity of the market maker makes the market

more likely of being destabilized with a behavior that is equivalent to the one of fig. 5,

panel (b).
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Figure 7: Value of g1 for different values of ω and gd. The other parameters are fixed at
the following values: D = C = 1, R = 1.03, gd = 1.05 (panel (a)), ω = 1 (panel (b)).

5 Conclusions

The dynamic behavior of the models presented in this paper is qualitatively identical

to the one described in BH98. This shows that the complex dynamics of that model is

independent from the institutional framework of the market and in particular from the

assumption of market clearing. While this result was already established, under a simpler

setting, by Hommes et al. (2005), I show also that the market maker has conflicting
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effects on the stability of the market. She act as a stabilizer when she allows for market

imbalances, and as a destabilizer when she manages aggressively her inventories or when

she trades actively. The more stable institutional framework is one in which the market

maker is inventory neutral and doesn’t trade actively. Even in this scenario the typical

complex behavior of BH98 occurs.

In this paper the assumption of market clearing is replaced by the assumption that

markets are always liquid for the market maker. This hypothesis is critical to achieve

positive profits since it allows the market maker to adjust her inventory at a favourable

price. By making this assumption, we are implicitly introducing some liquidity provider

of last resort in the model, who might not necessarily be a speculator. Who might

play this role in the FX market? One option is provided by hedgers, like non financial

corporations, who represent important actors on the FX market. The model of Evans

and Lyons (2002) include two distinct classes of agents: the first one, represented by

speculators, demands liquidity from FX dealers at the beginning of the day, the second

one, represented by hedgers or “profit takers”, supplies to dealers the necessary liquidity

to balance the market. Empirical evidence confirms that financial customers demand

liquidity while hedgers are net liquidity providers (King et al., 2013). Alternatively,

we should not forget banks: given the pivotal role of the banking sector in the FX

market, their highly elastic supply of liquidity accomodates the needs of the operators on

the money markets for the domestic currency and, through liquidity swaps arranged by

central banks, for the most traded foreign currencies. A more careful assessment of these

hypotheses is left for future research.
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comments. All the usual disclaimers apply.

20



A Proofs

Proof of Lemma 1. Starting from eq. (10), the steady state must satisfy the following:

x∗ =
1

DRω + 1

[
1

2
− g

(
Dω +

1

2R

)
g
m∗ − 1

2

]
x∗ (21)

where

m∗ = n∗0 − n∗1 = tanh

[
β

2

(
−C +Dg (R− 1) (x∗)2

)]
(22)

The non fundamental solution is obtained by solving the following equation

m∗ = 1− 2R

g
(23)

We obtain that

x∗ =

√
Cβ + log

(
g
R
− 1
)

Dβg (R− 1)
(24)

Since x∗ must be real, the following must hold:

( g
R
− 1
)
eCβ ≥ 1 (25)

solving for g we obtain g ≥ R
(
1 + e−Cβ

)
. Letting β → ∞ we obtain the first claim,

letting β → 0 the second claim regarding the existence of two symmetric non fundamental

steady states.

The positive eigenvalue at the fundamental steady state is

λ =
2R + g (2DRω + 1)

[
tanh

(
βC
2

)
+ 1
]

4R (DRω + 1)
(26)

Solving for g the inequality λ < 1 we obtain that the fundamental steady state is

locally stable if 0 < g < R
(
1 + e−Cβ

)
. Letting β →∞ we obtain the first claim, letting

β → 0 the second claim regarding the stability of the fundamental steady state.
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Solving for β the equality λ = 1 we obtain the critical value

β∗ =
1

C
log

(
1

g/R− 1

)
(27)

We see that for R < g < 2R we have that β∗ ∈ (0,∞). The last claim is proved by

substituting β∗ into eq. (24) since in this case we obtain x∗ = 0.

Proof of Lemma 2. The characteristic equation for the stability of the non fundamental

steady states is

P (λ,K) = λ3 − λ2
(
K

R
+ 1

)
+Kλ+K

(
1− 1

R

)
= 0 (28)

where

K = − gcC

8 (R− 1) (DRω + 1)
(β − β∗) (2DRω + 1)

(
m2
nf − 1

)
(29)

mnf ≡ 1− 2R
g

and β∗ is defined as in eq. (27). Under the hypotheses we have β > β∗

and −1 < mnf < 0, thus K > 0.

The critical points of P (λ,K) are

xcritical =
1

3R

(
K +R±

√
(K +R)2 − 3KR2

)
(30)

We see that for K > 0 and (K +R)2 − 3KR2 ≥ 0, the two critical points are real

and positive. Since the derivative of G(K) ≡ (K +R)2 − 3KR2 is increasing in K,

while the second derivative is strictly positive, G(K) has a global minimum at K∗ =

R
2

(3R− 2) > 0. If we substitute back K∗ into G we obtain that the minimum of G is

G(K∗) = −9R4

4
+ 3R3 which is nonnegative if the following holds

1 < R ≤ 4

3
(31)
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which we assume is true from now on. From the foregoing we derive

P (−1, K) = − 2

R
(K +R) < 0

P (0, K) =
K

R
(R− 1) > 0

P (1, K) =
2K

R
(R− 1) > 0

Thus the smallest of the three roots is always real and comprised between -1 and 0.

The two other roots instead have always a positive real part. In fact the positive larger

critical point lies to the left of the largest root if the latter is real, or otherwise it coincides

with the real part of the two complex conjugate roots. On the other hand, the positive

smaller critical point lies to the left of the smaller of the two real roots or to the left of

the real part of the two complex conjugate roots.

In order to show that the largest root crosses the unit circle for β →∞ it suffices to

show that the largest critical point is increasing in K, since we know that K is increasing

in β and since the largest critical point is a lower bound for the absolute value of the

largest root in absolute terms. Now we differentiate the largest critical point wrt K:

∂xcritical
∂K

=
1

3R


1 +

K − 3R2

2
+R√

−3KR2 + (K +R)2


 (32)

We consider the following lower bound:

1

3R

(
1 +
−3R2

2
+R

K +R

)

which is increasing in K for R ≥ 1. We need to prove that it is nonnegative. Solving

the inequality for K we obtain

K ≥ R

2
(3R− 4) (33)

which is automatically satisfied since K > 0 as soon as R < 4/3.

In order to prove that we have a Hopf bifurcation we observe that if the largest real
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root would become equal to unity while K increases, we would necessarily have that

P (1, K) = 0 for some value of K, something which contradicts our previous statements.

Proof of Lemma 3. Following BH98, in order to prove the claim we need to show that,

when the fundamental steady state is unstable, the system returns to the fundamental

steady state for some T > 0 if and only if g <
R(2DR2ω+2R−1)

2DRω+1
.

When β → ∞ we have that mf ≡ tanh
(
−β C

2

)
→ −1 and the fundamental steady

state is E0 = (0,−1). The eigenvalues at the fundamental steady state are (0, 0, λ∞) with

λ∞ =
R + (2DRω + 1)g

2R (DRω + 1)
(34)

We suppose that g > R, thus the fundamental steady state is unstable since λ∞ > 1.

The eigenvector associated with λ∞ is




(2DRgω+R+g)2

4R2(DRω+1)2

2DRgω+R+g
2R(DRω+1)

1




(35)

We know that the system evolves according to eqs. (10) and (11), which we reproduce

here for convenience of the reader:

xt =
2R− g (2DRω + 1) (mt−1 − 1)

4R (DRω + 1)
xt−1 (10)

mt−1 = tanh

(
β

2
(Dgc (Rxt−2 − xt−1)xt−3 − C)

)
(11)

Let’s consider the following expression

Ct ≡ Dg (Rxt−1 − xt)xt−2 (36)
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we see that for β →∞

mt =





+1 if Ct > C

−1 otherwhise
(37)

Let’s suppose that, starting from the fundamental steady state, a small shock occurs

at t = −2 and is propagated until t = 0. Then we have

x−2 = ε

x−1 =
2R− g (2DRω + 1) (m−2 − 1)

4R (DRω + 1)
ε

x0 =

[
2R− g (2DRω + 1) (m−1 − 1)

4R (DRω + 1)

] [
2R− g (2DRω + 1) (m−2 − 1)

4R (DRω + 1)

]
ε

By hypothesis we know that m−3 = −1. Furthermore C−2 = C−1 = 0 thus m−2 =

m−1 = −1. As a consequence we obtain the following:

x−1 = λ∞ε

x0 = λ2∞ε

From our hypotheses we see that the system is on an explosive path. Any trajectory

starting in a neighborhood of the fundamental steady state will move along the unstable

eigenvector until mt = −1 and thus will diverge to infinity unless mT = 1 for some T > 0.

In fact in this case we have that

xT+1 =
xT

2 (DRω + 1)
(38)

and thus xT+t → 0 for t→∞ as long as CT+t > C. This eventuality depends on the

evolution of the value of Ct over time. In particular, if Ct →∞ for t→∞ then for some

T > 0 the conclusion follows.

Let’s suppose that Ct−k < C for all 0 ≤ k ≤ t (otherwise the conclusion already

follows) so that mt−k = −1. Substituting in Ct the iterated values obtained from an
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initial shock ε occurred at t = −2 we obtain

Ct = λ2t∞Dε
2g
g (2DRω + 1) +R

4R2 (DRω + 1)2
[
2DRω(R2 − g) +R(2R− 1)− g

]
(39)

which will diverge to ±∞ depending on the sign of the rightmost term. Thus the

conclusion follows from the following condition

g <
R (2DR2ω + 2R− 1)

2DRω + 1
(40)

We recover the result of BH98 considering the limit ω →∞ where we obtain that g < R2

.

Proof of Lemma 4. The steady state solutions must satisfy the following equation:

x∗ =
R− (2DRω + 1) gc

m∗ − 1

2
2R (DRω + 1)− (R− gd)2

x∗ (41)

where m∗ is defined as in eq. (22). The non fundamental solution is obtained by

solving the following equation:

m∗ = mnf (42)

where

mnf ≡ 1− 2R

gc
+

2 (R− gd)2
gc (2DRω + 1)

(43)

We obtain that

x∗ =

√√√√Cβ + log
(

1+mnf
1−mnf

)

Dβgc (R− 1)
(44)

Since x∗ must be real, the following must hold:

eβC
1 +mnf

1−mnf

≥ 1 (45)
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Solving this condition for gc we obtain

gc ≥
(
R− (R− gd)2

2DRω + 1

)
(
1 + e−βC

)
(46)

Letting β → ∞ we obtain the first claim, letting β → 0 the second claim regarding

the existence of two symmetric non fundamental steady states.

The non trivial eigenvalue at the fundamental steady state is

λ =
2R + gc (2DRω + 1)

[
tanh

(
βC
2

)
+ 1
]

4R (DRω + 1)− 2 (R− gd)2
(47)

The reader can easily check that λ is positive and finite under the hypotheses. We

see that λ is increasing in gc. Solving the inequality λ < 1 for gc we obtain that the

fundamental steady state is locally stable if the following condition holds

0 < gc <

(
R− (R− gd)2

2DRω + 1

)
(
1 + e−βC

)
(48)

Letting β → ∞ we obtain the first claim, letting β → 0 the second claim regarding

the stability of the fundamental steady state.

Solving the equality λ = 1 for β we obtain the critical value β∗:

β∗ =
1

C
log

(
1−mnf

1 +mnf

)
(49)

It’s easy to check that for 0 ≤ R − (R−gd)2
(2DRω+1)

< gc < 2
[
R− (R−gd)2

(2DRω+1)

]
we have that

β∗ ∈ (0,∞). The last claim of the lemma is proved by substituting β∗ into eq. (44) since

in this case we obtain x∗ = 0.

Proof of Lemma 5. The characteristic equation for the stability of the non fundamental
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steady states is

P (λ,K) = λ3 − λ2
(
K

R
+ 1

)
+Kλ+K

(
1− 1

R

)
= 0 (50)

where

K = − RgcC

(R− 1)
[
8R (DRω + 1)− 4 (R− gd)2

] (β − β∗) (2DRω + 1)
(
m2
nf − 1

)
(51)

and mnf and β∗ are defined as in eqs. (43) and (49) respectively. Under the hypotheses

we have β > β∗ and −1 < mnf < 0, thus the sign of K depends on the sign of F (K) ≡

8R (DRω + 1) − 4 (R− gd)2 which is increasing in ω. We have that F (K) > 0 if the

following condition holds:

ω >
1

DR2

(
1

2
(R− gd)2 −R

)
(52)

The expression in parenthesis on the RHS is negative for gd ∈
(
R−
√

2R,R +
√

2R
)

,

which we assume is true. Thus the condition (52) is satisfied by our assumptions on ω

and we obtain that K > 0. Following the same arguments of Lemma 2, we obtain the

conclusion.

Proof of Lemma 6. The argument follows the same lines of the proof of Lemma 2. In

particular, the eigenvalues at the fundamental steady state for β →∞ are (0, 0, λ∞) with

λ∞ =
(2DRω + 1)gc +R

2R(DRω + 1)− (R− gd)2
(53)

The reader can check that, under the hypotheses, λ∞ is finite and greater than unity.

The system evolves according to eq. (18) which we reproduce for convenience of the

reader:

xt =
R− gc (2DRω + 1)

mt−1 − 1

2
2R (DRω + 1)− (R− gd)2

xt−1 (18)
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where mt−1 is given by eq. (11). Introducing a shock at t = −2 and repeating the

steps of lemma 3 we obtain that x0 = λ2∞ε and m0 = −1. As long as mt−1 = −1 for t ≥ 2,

we obtain that xt = λ2+t∞ ε and the system is on an explosive path. Instead if mT = 1 for

some T > 0 we have that

xT+1 =
R

2R (DRω + 1)− (R− gd)2
xT (54)

The reader can check that under the hypotheses made on gd the coefficient on the

RHS is positive and smaller than unity, then xT+t → 0 for t→∞ as long as CT+t > C.

The expression for Ct in this case becomes

Ct = λ2t∞Dε
2gc

gc (2DRω + 1) +R
[
2R (DRω + 1)− (gd −R)2

]2
(
2DRω(R2 − gc) +R(2R− 1)−R(R− gd)2 − gc

)
(55)

which diverges to ±∞ depending on the sign of the rightmost term. Thus the con-

clusion follows from the following condition:

gc <
R

2DRω + 1

[
2R (DRω + 1)− (R− gd)2 − 1

]
(56)

We recover the result of BH98 considering the limit ω →∞ where we obtain gc < R2.

In the limit ω → 0 we obtain instead the following:

gc < R
[
2R− 1− (R− gd)2

]
(57)
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