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DISEI, Università degli Studi di Firenze
Via delle Pandette 9, 50127 Firenze (Italia) www.disei.unifi.it

The findings, interpretations, and conclusions expressed in the working paper series are those of the
authors alone. They do not represent the view of Dipartimento di Scienze per l’Economia e l’Impresa



Variational inequalities, maximal elements and economic equilibria

Maria Bernadette Donato and Antonio Villanacci

December 29, 2021

Abstract

Our main goal in this paper is to provide conditions under which the solution sets to a maximal problem and to a
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1 Introduction

In the present work, we provide conditions under which the solution sets to a maximal problem and to a generalized
variational inequality problem coincide and are nonempty. We then use the above results to get a proof of existence of
equilibria in an exchange economy model.
In choice theory, individual actors are assumed to have preferences on a set of alternatives, i.e., a binary relation on a
choice set. Individuals choose a subset of the choice set using such preferences1. The preference relation is often assumed
to be transitive and complete - where completeness means the individual is able to compare any pair of alternatives. In
that case, the individual will look for an element in the choice set which is preferred to any other element in the set,
i.e., a maximum element.
It is indeed analytically convenient to describe preferences by a real valued function defined on the choice set. Transitivity
and completeness are necessary, but not sufficient conditions to accomplish such task.2 Debreu [12] showed that further
assumptions on the preference relation (and the choice set) are required.
At the other end of the spectrum, many authors have questioned the realism of both completeness and transitivity.
Indeed, completeness fails to acknowledge the possibility of being unable to choose between two alternatives, basically
for lack of information. To see why transitivity may be fail in a very simple manner, observe what follows. Transitivity
of preferences implies transitivity of the associated indifference relation. On the other, making a long chain of almost
identical and therefore indifferent elements may clearly violate transitivity: “I am indifferent between a cup of coffee
with no sugar and a cup of coffee with one grain of sugar and a cup of coffee with two grains of sugar and so on; on the
other hand, I am not indifferent between a cup of coffee with no sugar and a cup with 10 spoons of sugar”3. In the case
of preferences without completeness and transitivity, the individual will look for an element in the choice set which is
not strictly preferred by any other element in the set, i.e., a maximal element.
In the present work, the way we use to find maximal elements is to follow a variational inequality approach. The theory
of variational inequalities was introduced in the seventies by Stampacchia [30], inspired by work of Fichera [15], as an
innovative and effective method to solve equilibrium problems arising in mathematical physics. Starting from 1985, this
theory was applied to find solutions to optimization problems and system of equations. Different problems arising from
the economic, financial and engineering fields (see e.g. [6],[7],[11],[13],[29] and references therein) can be modeled by
means of variational and quasi-variational inequalities and can be studied by using this theory, providing existence of
solutions, well posedness and iterative schemes for computational purposes.
At the best of our knowledge, our results about the maximal problem is a strict generalization of any corresponding
result in the Variational Inequality literature applied to Euclidean space (see [4] and [27] and references there). The
result about existence of equilibria in exchange economies is strictly more general than any work in the Variational
Inequality literature and still less general than the results obtained in the economic literature. Our future research aims
to fill this last gap.
The paper is organized as follows. In Section 2, we present the maximal problem, the Variational Inequality problem
and our main results. In Section 3, we compare the above results with the ones available in the Variational Inequality
literature. In Section 4, we apply the result obtained above to show existence of equilibria in a general equilibrium

1Formal definitions and statements of what said below are presented in Section 2.
2See, for example, [21], p.46, for a standard example of a preference relation which is transitive, complete (and satisfies also some other

“reasonable” conditions) which cannot be represented by a utility function.
3See also [24]
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model of an exchange economy. In Section 5, we make the corresponding literature comparison. The Appendix contains
results used in the analysis of the above sections.

2 Existence of a Maximal element and an associated Variational Inequal-
ity problem

We start our analysis presenting first some terminology about preference relations.

Definition 1 A binary relation on the set X is a subset R of the Cartesian product X ×X. If X is a choice set, we
call R a preference relation. For any x, y ∈ X, we write (x, y) ∈ R as x � y, which we read as “x is at least as good as
y” or “x is weakly preferred to y”.

Definition 2 The strict preference relation, denoted by �, is defined as follows
x � y ⇔ x � y but not y � x.
and x � y is read as “x is preferred to y”.

Remark 3 The definition of strict preference we presented above is the one most followed in the literature - see, for
example, [21], page 6. Some authors give the following definition x � y ⇔ not y � x - see, for example, [23], page 9.

Definition 4 The indifference relation, denoted by ∼, is defined as follows
x ∼ y ⇔ x � y and y � x.
and x ∼ y is read as “x is indifferent to y”.

Definition 5 The preference relation � on a set X is
complete if for any x, y ∈ X, either x � y or y � x;
transitive if for any x, y, z ∈ X, if x � y and y � z, then x � z;
continuous if X is a topological space and for any x ∈ X, both {y ∈ X : y � x} and {y ∈ X : x � y} are closed set in X.

Definition 6 x, y ∈ X are not comparable if

not x � y ∧ not y � x.

Definition 7 Given a preference relation � on a set X, we say that
x is maximum (for � on X) if x ∈ X and for any y ∈ X, x � y;
x is maximal (for � on X) if x ∈ X and for any y ∈ X, not (y � x).

Remark 8 x is a maximal if x ∈ X and for any y ∈ X, either x � y or x, y are not comparable, as verified below.
Given x, y ∈ X, then the following cases are possible.

y � x not y � x

x � y 1 2

not x � y 3 4

1. x � y and y � x, i.e., x ∼ y;
2. x � y and not y � x, i.e., x � y;
3. not x � y and y � x, i.e., y � x;
4. not x � y and not y � x, i.e., x and y are not comparable.
The above observation suggests that if a preference relation is not complete, then a reasonable choice for an individual
would be a maximal element.

Definition 9 A function u : X → R is an utility function representing the preference relation � if

∀x, y ∈ X, x � y ⇔ u (x) ≥ u (y) .

Proposition 10 (See [12], page 56) If X is a connected subset of Rn, and the preference relation � is complete,
transitive and continuous, then there exists a continuous utility function representing the preference relation �.

Definition 11 The strictly preference set-valued map P : X ⇒ X, is defined as follows.

P (x) = {z ∈ X : z � x} .

The set P (x) of all vectors z that are strictly preferred to x is called strict upper contour set.
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Given the above definitions, we can now present our choice problem analysis. We are interested in preference relations
which are neither complete nor transitive. We consider an individual described by a choice set X ⊆ RC , with C ∈ N,
a constraint set K ⊆ X and a set valued function P : X ⇒ X. An usual economic interpretation of the above objects
goes as follows. The individual is a consumer or household who has to choose a vector of C existing commodities or
goods. X is the set of commodities the household can consume on the basis of biological and physical considerations;
K is the set of commodities the household can afford on the basis of economic constraints depending on her wealth and
existing prices; P describes preferences or tastes of the household.

Definition 12 x ∈ X is a maximal element for P on K if x ∈ K and P (x)∩K = ∅. In that case, we say that x solves
problem M (K,P ).

Remark 13 The above definition is consistent with Definition 7. Indeed,

x ∈ K ∧ 〈 y ∈ K ⇒ y /∈ P (x)〉
⇔
x ∈ K ∧ 〈 K ∩ P (x) = ∅〉

is equivalent to
〈∃y ∈ X such that y ∈ K ∧ y ∈ P (x)〉
⇔
〈∃y ∈ X such that y ∈ K ∩ P (x)〉 ,

which is obviously true.

Remark 14 If P (x) = {x′ ∈ X : u (x′) > u (x)}, then x ∈ X defined above is a solution to the problem

max
x∈K

u (x) .

The main goal of this section is to provide conditions under which the solution sets to M (K,P ) and to a well chosen
Generalized Variational Inequality problem defined below - see Definition 30 - do coincide and are not empty. That goal
is achieved in Proposition 31 and Proposition 36.
In what follows, we present needed assumptions on X,K and P , some preliminary definitions and facts.

Definition 15 For any y ∈ RC and any r ∈ R++ , the open RC ball centered at y of radius r is denoted and defined as
follows.

B (y, r) =
{
z ∈ RC : ‖y − z‖ < r

}
,

the unit sphere of RC centered at zero as

S (0, 1) =
{
z ∈ RC : ‖z‖ = 1

}
Definition 16 Given K ⊆ RC ,

IntRC (K) = {x ∈ K : ∃r ∈ R++ such that B (x, r) ⊆ K} ,

K⊥ =
{
z ∈ RC : ∀x, y ∈ K, 〈z, x− y〉 = 0

}
,

aff(K) =

{
x ∈ RC : ∃m ∈ N, (λi)mi=1 ∈ Rm, a1, ..., am ∈ A such that x =

m∑
i=1

λia
i and

n∑
i=1

λi = 1

}
,

conv(K) =

{
x ∈ RC : ∃m ∈ N, (λi)mi=1 ∈ Rm+ , a1, ..., am ∈ A such that x =

m∑
i=1

λia
i and

n∑
i=1

λi = 1

}
.

Definition 17 Given x, y ∈ RC such that x 6= y, the closed segment from x to y is denoted and defined as follows

[x, y] =
{
z ∈ RC : ∃ ∈ λ ∈ [0, 1] such that z = (1− λ)x+ λy

}
.

Similar definition applies to half open segments [x, y).

Definition 18 A set valued function P : X ⇒ X is lower semicontinuous at x ∈ X if P (x) 6= ∅ and for every sequence
(xn)n∈N ∈ X∞ such4 that xn → x, and for every y ∈ P (x), there exists a sequence (yn)n∈N ∈ X∞ such that ∀ n ∈ N,
yn ∈ P (xn) and yn → y. P is lower semicontinuous if it is lower semicontinuous at every x ∈ X.

4Given a set S, S∞ denotes the set of sequences with elements in S.
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Definition 19 P : X ⇒ X is RC open valued a x ∈ X if P (x) is RC open. P is X open valued at x ∈ X, if there
exists r ∈ R++ such that B (y, r) ∩X ⊆ P (x).

Assumptions

(i.1) K is convex;

(i.2) K⊥ = {0};

(i.2*) K 6= ∅;

(i.2**) K ⊆ IntRC (X);

(i.3) K is compact;

(ii) P is lower semicontinuous;

(iii) (Openness like assumption) For any x ∈ X, for any y ∈ P (x) and for any z ∈ X\ {y}, we have [z, y) ∩ P (x) 6= ∅;

(iv) P is convex valued;

(v) (Irreflexivity) For any x ∈ X, x /∈ P (x);

(vi) (Global NonSatiation) P is non-empty valued;

(vii) For any x ∈ X, IntRCP (x) 6= ∅.

(vii*) For any x ∈ X, there exists y ∈ P (x) such that for any z ∈ RC\ {y}, [z, y) ∩ P (x) 6= ∅;

(viii) (Local NonSatiation) For any x ∈ X and any r > 0, there exists y ∈ X such that y ∈ P (x) ∩ B (x, r).

Remark 20 1. P is Locally NonSatiated ⇔ For any x ∈ RC , x ∈ ClRC (P (x)), where Cl denotes the Closure of a set
(with respect to the Euclidean topology of RC).
2. Assumption (i.2) ⇒ Assumption (i.2*);
Indeed, K⊥ = {0} ⇔ aff (K) = RC and if K = ∅, then aff (K) = Cl (aff (∅)) = ∅ 6= RC .
3. Assumption (viii) ⇒ Assumption (vi).
4. P is RC open and non-empty valued ⇒(vii) ⇒ (vii*) ⇒ (vi).
5. P is X open valued ⇒ Assumption (iii).
6. Assumption (viii) ⇒ Assumption (vi).
7. IntRC (K) 6= ∅⇒ (i.2) (see Proposition 60 in the Appendix).
8. ∅ 6= K ⊆ IntRC (X) ; IntRC (K) 6= ∅;
indeed, it is enough to take X = R2

++ and K =
{
x ∈ R2

++ : x1 + x2 = 1
}

9. ∅ 6= K ⊆ IntRC (X) : IntRC (K) 6= ∅.
10. Assumption (ii) ⇒ Assumption (vi).

Remark 21 All the assumptions listed above have been used extensively in the literature apart from Assumptions (iii)
and (vii*).To the best of our knowledge, [9], page 133, was the first author to introduce Assumption (iii). We introduced
Assumption (vii*). That assumption is more general than “For any x ∈ X, P (x) contains an RC internal point”, where
y ∈ P (x) is an RC internal point if for any z ∈ RC\ {y}, there exists tz ∈ R++ such that for any t ∈ [0, tz], we have
y + tz ∈ P (x).

Proposition 22 Define � on R as follows: for any x, y ∈ R, y � x if y ∈ [x, x+ 1).
1. � is a. neither transitive, b. nor complete;
2. P (x) := {y ∈ R : y � x} = (x, x+ 1);
3. P satisfies Assumptions from (ii) to (viii).

Proof. Define
Pw : R→→ R, Pw (x) = [x, x+ 1) .

Therefore, y � x if and only if y ∈ Pw (x).
1.a. 2.5 � 1.5 and 1.5 � 1.1 but it is not the case that 2.5 � 1.1. b. Neither 1 � 3 nor 3 � 1.
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2. We have to check that y � x ⇔ y ∈ (x, x+ 1).

y � x⇔ y � x and not x � y ⇔

y ∈ Pw (x) and not x ∈ Pw (y) ⇔

y ∈ [x, x+ 1) ∧ x /∈ [y, y + 1) ⇔

y ∈ [x, x+ 1) ∧ (x ∈ (−∞, y) ∨ x ∈ [y + 1,+∞)) ⇔

y ∈ [x, x+ 1) ∧ (x < y ∨ x ≥ y + 1) ⇔

y ∈ [x, x+ 1) ∧ (y > x ∨ y ≤ x− 1) ⇔

y ∈ [x, x+ 1) ∧ (y ∈ (x,+∞) ∪ (−∞, x− 1]) ⇔

y ∈ (x, x+ 1)

3. It is easy to check P satisfies any of the assumptions we listed about P .

Remark 23 If we consider the maximization problem described in Remark 14 and u is continuous and (quasi-concave
and Locally NonSatiated) or (semistrictly quasi-concave and Globally NonSatiated), then the set-valued function P :
X ⇒ R, P (x) = {x′ ∈ X : u (x′) > u (x)} does satisfied the Assumption listed above.

Definition 24 The normal cone to P (x) at x ∈ X is denoted and defined as follows.

N> (x) =
{
h ∈ RC : ∀z ∈ P (x) , 〈h, z − x〉 ≤ 0

}
.

Remark 25 The normal cone to a convex set is a closed convex cone - see, for example, Proposition 2.10, page 42, in
[28].

Proposition 26 If P satisfies Assumptions (iv),(v) and (vi), then

∀x ∈ X , N> (x) \ {0} 6= ∅.

Proof. From Assumptions (iv),(v) and (vi), x /∈ P (x) and P is convex and nonempty valued. We can then apply the
Separation Theorem 62 in the Appendix and conclude that there exists

h 6= 0 (1)

such that for any z ∈ P (x), 〈h, z − x〉 ≤ 0, i.e., from Definition 24,

h ∈ N>(x). (2)

(1) and (2) are the desired results.

Remark 27 We are going to use the next result in Proposition 36 below.

Proposition 28 If P satisfies Assumption (ii), then the set-valued map N> : X ⇒ X, x 7→7→ N> (x) is closed.

Proof. Let (xk)k∈N ∈ X∞ and(yk)k∈N ∈ X∞ be sequences such for any k ∈ N, yk ∈ N>(xk) and such that
limk→+∞ xk = x and limk→+∞ yk = y. We have to prove that y ∈ N>(x), that is, for any z ∈ P (x), we have
〈y, z− x〉 ≤ 0. Since P is lower semicontinuous, then, taken z ∈ P (x), there exists a sequence (zk)k∈N such that for any
k ∈ N, zk ∈ P (xk) and limk→+∞ zk = z. From the facts that zk ∈ P (xk) and yk ∈ N>(xk), it follows 〈yk, zk − xk〉 ≤ 0.
Taking limits we get 〈y, z − x〉 ≤ 0, i.e., y ∈ N>(x), as desired.

Definition 29
G : X ⇒ RC , G (x) = conv

(
N> (x) ∩ S (0, 1)

)
Definition 30 Given a set K ⊆ RC and a set-valued function P : X →→ X, we define the Problem GVI(K,P ) as
follows.

Find x ∈ K such that ∃ h ∈ G (x) such that ∀x ∈ K, 〈h, x− x〉 ≥ 0 (3)
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Proposition 31

1. x solves GVI (K,P ) and
either a. Assumptions (iii), (iv), (v), (vii*), (i.2),
or b. Assumptions (iii), (iv), (v), (vi), (i.2**)
hold true

⇒ x solves M (K,P ) ;

2. x solves GVI (K,P ) ⇐ x solves M (K,P ) and
Assumptions (i.1), (i.2*), (iv), (viii)
hold true.

To prove Proposition 31, we need some preliminary results.

Definition 32 A cone K ⊆ RC is pointed if K ∩ (−K) = {0}.

Proposition 33 1. If Assumption (vii*) hold true, then for any x ∈ X, we have that N> (x) is a pointed cone.
2. If Assumption (iii) holds true and ∅ 6= P (x) ∩K ⊆ IntRC (X), then N> (x) is a pointed cone.

Proof. 1.
Suppose otherwise, i.e., there exists h ∈ RC\ {0} such that h ∈ N> (x) ∩ (−N> (x)), or

∃h ∈ RC\ {0} such that h,−h ∈ N> (x) .

From Assumption (vii*), we have that there exists y ∈ P (x) such that for any z ∈ RC\ {y}, [z, y) ∩ P (x) 6= ∅. Since
y ∈ P (x) and h,−h ∈ N> (x), we have that 〈h, y − x〉 ≤ 0 and 〈−h, y − x〉 ≤ 0, i.e.,

〈h, y − x〉 = 0. (4)

Since h 6= 0, then y + h 6= y and from Assumption (vii*), identifying x ∈ X, y ∈ P (x) , z ∈ RC\ {y} with x ∈ X, y ∈
P (x) , y + h ∈ RC\ {y}, we have that [y + h, y) ∩ P (x) 6= ∅, i.e.,

∃α ∈ (0, 1] such that y + αh ∈ P (x) . (5)

Then,

0
def. N>(x), (5)

≥ 〈h, y + αh− x〉 = 〈h, y − x〉+ α ‖h‖2 (4)
= α ‖h‖2 > 0,

the desired contradiction.
2. (The proof is similar to the proof of 1. above)
Suppose otherwise, i.e.,

∃h ∈ RC\ {0} such that h,−h ∈ N> (x) .

Since by assumption ∅ 6= P (x) ∩K ⊆ IntRC (X), we can take z ∈ P (x) ∩K ⊆ IntRC (X). Then, since z ∈ P (x) and
h,−h ∈ N> (x), we have that 〈h, z − x〉 ≤ 0 and 〈−h, z − x〉 ≤ 0, i.e.,

〈h, z − x〉 = 0. (6)

Since h 6= 0, then z + h 6= z and since z ∈ IntRC (X), then there exists αh ∈ R++ such that z + αhh ∈ X\ {z}. Then,
from Assumption (iii), identifying x ∈ X, y ∈ P (x) , z ∈ X\ {y} with x ∈ X, z ∈ P (x) , z + αhh ∈ X\ {z}, we get
[z + αhh, z) ∩ P (x) 6= ∅. Then

∃α ∈ (0, αh] such that y + αh ∈ P (x) . (7)

Then,

0
def. N>(x), (7)

≥ 〈h, y + αh− x〉 = 〈h, y − x〉+ α ‖h‖2 (4)
= α ‖h‖2 > 0,

the desired contradiction.

Proposition 34 If Assumptions (iv), (v) and (vi) hold true, then for any x ∈ X , there exists h′ 6= 0 such that
h′ ∈ G (x).

Proof. Since Assumptions (iv), (v) and (vi) hold true, then we can use Proposition 26 and take h ∈ N> (x) \ {0}.
Then, by definition of N> (x), we have that

∀y ∈ P (x) , 〈h, y − x〉 ≤ 0.
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Since h 6= 0, we can define h′ = h
‖h‖ . Then,

∀y ∈ P (x) , 〈h′, y − x〉 =
1

‖h‖
〈h, y − x〉 ≤ 0,

i.e., h′ ∈ N> (x) and moreover h′ := h
‖h‖ ∈ S (0, 1). Therefore

h′ 6= 0 and h′ ∈ N> (x) ∩ S (0, 1) ⊆ conv
(
N> (x) ∩ S (0, 1)

)
:= G (x) .

Proposition 35 If
x ∈ K and P (x) ∩K 6= ∅, and
either Assumptions (iv), (v), and (vii*) hold true,
or Assumptions (iii), (iv), (v), (vi), (i.2**) hold true,
then

0 /∈ G (x) .

Proof. Since ∅ 6= P (x) ∩K ⊆ K, if (i.2**) holds true, then we have ∅ 6= P (x) ∩K ⊆ K ⊆ IntRC (X).
Then, under the assumptions of the present Proposition, both sets of assumptions of Proposition 33 hold true and we
can conclude that N> (x) is a pointed cone. Then,

N> (x) ∩
(
−N> (x)

)
= {0} . (8)

Now, suppose our claim is false, i.e.,
0 ∈ conv

(
N> (x) ∩ S (0, 1)

)
.

Since Assumptions (iv), (v), (vi) hold true (recall that (vii*) implies (vi) ), we can apply Proposition 34. There-
fore, there exists h′ 6= 0 such that h′ ∈ G (x) := conv (N> (x) ∩ S (0, 1)). Then since 0, h ∈ G (x) and h 6= 0, then
dim conv (N> (x) ∩ S (0, 1)) := r ≥ 1. From Caratheodory’s theorem - see Theorem 2.2.4, page 55, Webster (1994) - we
have that there exist

λ = (λi)
r+1
i=1 ∈ ∆r+1 :=

{
x ∈ Rr+1

+ :

r+1∑
i=1

xi = 1

}
and

{v1, ..., vi, ..., vr+1} ⊆ N> (x) ∩ S (0, 1) (9)

such that
r+1∑
i=1

λivi = 0. (10)

Since λ ∈ ∆r+1, then there exists s ∈ {1, ..., r + 1} such that λs > 0. Then, from (10), we have

N> (x)
(9)
3 vs = −

∑
i∈{1,...,r+1}\{s}

λi
λs
vi (11)

Observe that since r ≥ 1, then {1, ..., r + 1} \ {s} 6= ∅. Recall that A is a convex cone if and only if for any a, b ∈ A
and any scalar λ, µ ≥ 0, λa + µb ∈ A - see Proposition 63 in the Appendix. Then, since for any i ∈ {1, ..., r + 1} \ {r},
λi

λs
≥ 0, we have

−vs =
∑

i∈{1,...,r+1}\{s}

λi
λs
vi ∈ N> (x) . (12)

Since from (9), vs ∈ S (0, 1), we also have
vs 6= 0. (13)

(11) , (12) and (13) contradict (8).

Proof. of Proposition 31.
Before proving statements 1.a. and 1.b, we present some preliminary observations.
1.
Since by assumption x solves GVI (K,P ), then

x ∈ K and ∃h ∈ G (x) such that ∀x ∈ K, 〈h, x− x〉 ≥ 0. (14)
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Then,
h ∈ G (x) := conv

(
N> (x) ∩ S (0, 1)

)
⊆ conv

(
N> (x)

)
= N> (x) , (15)

where last equality follows from Remark 25 and the fact that we assumed (iv).
Now assume our claim is false, i.e., since from (14), x ∈ K,

x ∈ K and P (x) ∩K 6= ∅. (16)

Then, from (16), and since Assumptions (iv), (v) and (vii*) hold true, or Assumptions (iii), (iv), (v), (vi) and (i.2**)
hold true, we can apply Proposition 35. Therefore, 0 /∈ G (x) and since h ∈ G (x), we have that

h 6= 0. (17)

From (15) and (17), we have that
h ∈ N> (x) \ {0} . (18)

Since h ∈ N> (x), we have that
∀w ∈ P (x) , 〈h,w − x〉 ≤ 0. (19)

a.
Since by Assumption (i.2), K⊥ = {0} and from (17) h 6= 0, then h /∈ K⊥, i.e., there exists y ∈ K such that 〈h, y − x〉 6= 0.
From (14),

∃y ∈ K such that 〈h, y − x〉 > 0. (20)

From (16), there exists x ∈ X such that
x ∈ P (x) ∩K. (21)

Now observe that y 6= x. Indeed, if y = x, then from (20), we would have 〈h, x− x〉 > 0. Since from (21), we have
x ∈ P (x) and h ∈ N> (x), we also have 〈h, x− x〉 ≤ 0, a contradiction.
Since, from (21), x ∈ P (x) and y 6= x, we can use Assumption (iii), identifying x ∈ X, y ∈ P (x) , z ∈ X\ {y} there with
x ∈ X,x ∈ P (x) , y ∈ X\ {x} here, respectively to conclude that

[y, x) ∩ P (x) 6= ∅. (22)

For any λ ∈ (0, 1], define
x (λ) = (1− λ)x+ λy.

Then
〈h, x (λ)− x〉 = 〈h, (1− λ)x+ λy − x+ λx− λx〉 = λ 〈h, y − x〉+ (1− λ) 〈h, x− x〉 > 0,

where the strict inequality follows from (20), (14) and the fact that λ ∈ (0, 1]. Therefore, from (19), ∀λ ∈ (0, 1],
x (λ) /∈ P (x), i.e.,

[y, x) ∩ P (x) = ∅,

contradicting (22).
b.
From (16) and (14),

∃x′ ∈ P (x) ∩K ⊆ K such that 〈h, x− x〉 ≥ 0 (23)

and from (18),
h ∈ N> (x) \ {0} . (24)

Since h ∈ N> (x) and since x′ ∈ P (x), we have 〈h, x′ − x〉 ≤ 0, and therefore

〈h, x′ − x〉 = 0. (25)

From Assumption (i.2**) and from (23), we have that there exists ε > 0 such that B (x′, ε) ⊆ X and therefore, since,
from (24) h 6= 0, there exists α > 0 such that x′ + αh ∈ X. Since, from (23), x′ ∈ P (x) and x 6= x′, we can use
Assumption (iii) to conclude that [x′ + αh, x′) ∩ P (x) 6= ∅, i.e., there exists α∗ ∈ (0, α) such that x′ + α∗h ∈ P (x).
Then, since h ∈ N> (x), 〈 h, (x′ + α∗h)− x〉 ≤ 0. Finally,

0 ≥ 〈 h, (x′ + α∗h)− x〉 = 〈 h, x′ − x〉+ α∗ ‖h‖2 (24),(25)
= α∗ ‖h‖2 > 0,

the desired contradiction.
2.
By assumption

P (x) ∩K = ∅, (26)
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and by Assumptions (i.1), (1.2*), (iv) and (viii) - which implies (vi),

K and P (x) are nonempty and convex.

Then, from the Separation Theorem 62 in the Appendix - we have that

∃h ∈ RC\ {0} such that ∀s ∈ P (x) and ∀t ∈ K, 〈h, s〉 ≤ 〈h, t〉 or 〈h, t− s〉 ≥ 0. (27)

From Remark 20.1, and Assumptions (viii), we have that x ∈ Cl (P (x)). Therefore, there exists (xk)k∈N ∈ (P (x))
∞

such that xk → x. Then,

∃h ∈ RC \ {0} such that ∀k ∈ N, ∀t ∈ K, 〈h, t− xk〉 ≥ 0,

Taking limits, we get
∃h ∈ RC \ {0} such that ∀t ∈ K, 〈h, t− x〉 ≥ 0. (28)

From (27) and since x ∈ K - because by assumption, x solves GVI (K,P ) - we have that

∃h ∈ RC \ {0} such that ∀s ∈ P (x) , 〈h, s− x〉 ≤ 0, (29)

i.e.,
h ∈ N> (x) . (30)

From (28), we have that
∃h′ := h

‖h‖ 6= 0 such that ∀t ∈ K, 〈h′, t− x〉 ≥ 0. (31)

Moreover, from Remark 25, N> (x) is a cone. Therefore, from (30), we do have

h′ ∈ N> (x) ;

moreover,

h′ :=
h

‖h‖
∈ S (0, 1) .

Finally,
h′ ∈ N> (x) ∩ S (0, 1) ⊆ conv

(
N> (x) ∩ S (0, 1)

)
:= G (x) . (32)

The fact that x ∈ M (K) and therefore x ∈ K, (31) and (32) are the desired result: x is a solution to Problem GVI
(K,P ).

Proposition 36 1. If Assumptions (i.1), (i.2*), (i.3), (ii), (iv), (v) and (vi) hold true, then

set of solutions to GVI (K,P ) 6= ∅;

2.a. If Assumptions (i.1), (i.2*), (i.3), (ii), (iii), (iv), (v), and
( (vii*)5 and (i.2) ) or ( (vi) and (i.2.**) )
hold true, then

∅ 6= set of solution to GVI (K,P ) ⊆ set of solutions to M(K,P );

b. If in addition Assumptions (viii) holds true then

set of solution to GVI (K,P ) = set of solutions to M(K,P ) 6= ∅.

Proof. 1.
We want to use Proposition 77 in the Appendix, identifying C,F with K,G respectively.
K is nonempty, compact and convex from Assumptions (i.1), (i.2*) and (i.3).To get the desired result we are left with
showing that G is nonempty valued, compact valued, convex valued, closed and upper semicontinuous on K. From
Proposition 34, which uses Assumptions (iv), (v) and (vi), G is nonempty valued. The other needed properties are
verified below - using Proposition 28 which uses Assumption (ii).
a. (convex valued) conv(N> (x) ∩ S (0, 1)) is a convex set.
b. (compact valued) N> (x) is closed by definition of normal cone and by continuity of inner product; S (0, 1) is compact.
Then, N> (x) ∩ S (0, 1) is compact as well (it is a closed subset of a compact space in RC). Finally, the desired result
follows from the fact that the convex hull of a compact set is compact - see Proposition 73 in the Appendix.
c. (upper semicontinuous) We want to use the following result: “ if ϕ : X ⇒ Y is a set valued function which is closed
graph and if ϕ (X) is contained in a compact set, then ϕ is upper semicontinuous.” - see Proposition 75 in the appendix.
Step 1. For any x ∈ X, G (x) ⊆ Cl (B (0, 1)).

5Recall that (vii*) ⇒ (vi).
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Observe that N> (x) ∩ S (0, 1) ⊆ S (0, 1) ⊆ Cl (B (0, 1)). Then,

G (x) ⊆ conv (Cl (B (0, 1))) = Cl (B (0, 1)) .

Step 2. G is closed graph.
Assume that (xn)n∈N ∈

(
RC
)∞

is such that xn
n→ x and ∀n ∈ N, vn ∈ G (xn) and vn

n→ v. We want to show that
v ∈ G (x).
By assumption for any n > N , vn ∈ G (xn) = conv (N> (xn) ∩ S (0, 1)). Now, from Carathèodory Theorem, ∀n > N

there exist (λni )
C+1
i=1 ∈ ∆C+1 :=

{
(αi)

C+1
i=1 ∈ RC+1

+ :
∑C+1
i=1 αi = 1

}
and{

un1 , ..., u
n
i , ..., u

n
C+1

}
⊆
(
N> (xn) ∩ S (0, 1)

)
(33)

(where the above points are not necessarily distinct) such that

vn =

C+1∑
i=1

λni u
n
i .

Since S (0, 1) is compact, up to a subsequence,

for any i ∈ {1, ..., C + 1} , uni
n→ ui ∈ S (0, 1) , (34)

Then we have that for any i ∈ {1, ..., C + 1} , uni ∈ N> (xn), uni
n→ ui and, by assumption xn

n→ x. Since from
Proposition 28, which uses Assumption (ii), the set valued function N> is closed we do have

for any i ∈ {1, ..., C + 1} , uni
n→ ui ∈ N> (x) ,

and, then from (34),

for any i ∈ {1, ..., C + 1} , uni
n→ ui ∈ N> (x) ∩ S (0, 1) . (35)

Since ∆C+1 is compact, up to a subsequence, we have that (λni )
C+1
i=1

n→
(
λi
)C+1

i=1
∈ ∆C+1.

Then

vn =

C+1∑
i=1

λni u
n
i

n→
C+1∑
i=1

λiui = v, (36)

where the second equality follows from the assumption that vn
n→ v and uniqueness of limit. From (36) and (35), we

have that v ∈ conv(N> (x) ∩ S (0, 1)) := G (x), as desired.
Conclusion 2.a follows from Proposition 31.1 and Conclusion 1 above.
Conclusion 2.b follows from Proposition 31.2., Conclusion 2a above.

3 Comparison with the available Variational Inequality results

Several papers analyze the relationship between the solutions to problems M (K,P ) and GVI(K,P ) and conditions
under which a solution to any of them does exist - see for example, [4], [27] and the papers quoted there. Some of those
papers deal with the case in which X is Banach space; they usually also present a specification of those results in the
case X ⊆ RC .
In what follows, we compare our results with the most general available results in the case in which the choice set X is a
subset of RC . The basic conclusions are as follows: our sufficient and necessary conditions are more general than those
available in the literature; our existence result in the case of compact K is more general than the same result available
in the literature. For the reader’s convenience, results used to support our statements are contained in Appendix 6.2
We divide the results available in the literature in two main sets: those dealing with preferences described by utility
functions and those by general (not necessarily complete or transitive) preferences.

3.1 Sufficient conditions for maximality

3.1.1 Results in terms of utility functions

Definition 37 Let A,B be subsets of RC and a function f : A → R be given. We say that f is radially continuous at
x ∈ A with respect to B if for every v ∈ B, limt→+∞ f (x+ tv) = f (x).Results in terms of utility functions

The main results existing in the literature are presented in Proposition 5.16, page 196, and Proposition 5.14, page193 -
which is used in Proposition 5.16 - in [4]. The statement of Proposition 5.16, using our notation and a maximization,
not minimization, approach is as follows.
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Proposition 38 Let the function f : X ⊆ RC → R be given. If
x solves GVI-cone (K,P ) (60) and
1 . f is quasiconcave;
2. f is radially continuous on X;
either 3.1. K ⊆ Int (X);
or 3.2. aff (K) = X or equivalently (i.2) K⊥ = {0};6.
4. x is not a global maximum7.
Then,

x solves maxx∈K f (x).

Our Propositions 80 in Appendix 6.2 says what follows. If x solves GVI (K,P ) and either 1. Assumptions (i.2),
(iii),(iv), (v), (vi) or 2. Assumptions (1.2**), (iii), (iv), (v), (vi) are satisfied, then x solves M (K,P ).
Therefore, from Proposition 79 in Appendix 6.2, our Proposition 80 is strictly more general in terms of assumptions
with respect to Proposition 38 (indeed radially continuous implies Assumption (iii) and not vice-versa) and strictly more
general in terms of conclusion, since it deals with a maximal and not a maximum result.

3.1.2 Results in terms of general preferences

The main paper on the topic is [27].8 Conditions presented in Theorem 3b, page 884, are the following ones:K is convex,
K 6= ∅, K is closed and � is lower semicontinuous, i.e., for any x ∈ X, P (x) is open.
In their proof, the following statement is not supported by their maintained assumptions:

xn := x′ +
1

n
h ∈ U (x) .

Indeed, by definition, U (x) ⊆ X and x′+ 1
nh may not belong to X if, for example, x′ belong to the boundary of X, but

h points outside the set. We do provide a similar argument, but we make an assumption that insures that x′ + 1
nh does

belong to X: indeed that assumption is (i.2**) - see the proof of Proposition 1.19.b.
An example in [4], page 197, shows a case in which
i. all the assumption of Theorem 3b in [27] are satisfied: K is nonempty, convex and closed; U (x) is open (and indeed
preferences can be represented by a continuous utility function);
ii. x solves the variational inequality problem, but it is not a maximal element.
Observe that example does not show that our Proposition is false, because that Proposition assumes either (i.2) or
(i.2**) and both those assumptions are violated in the example mentioned above. In the Appendix, we present a
detailed account of the above statements.

3.2 Necessary conditions for maximality

3.2.1 Results in terms of utility functions

The main results existing in the literature are presented in Proposition 5.18, page 198, in [4]. The statement of that
Proposition, using our notation and a maximization, not minimization, approach is as follows.

Proposition 39 Let the function f : X ⊆ RC → R be given. If
1. f is semistrictly quasiconcave;
2. f is continuous;
3. Int ({x ∈ X : f (x) ≥ f (x)}) 6= ∅
4. x is not a global maximum,
5. K is a convex set (and nonempty)
Then,

x solves maxx∈K f (x)⇒ x solves GVI (K,P ).

From Corollary 68 in Appendix 6.1, we can substitute Assumption 1. and 4. in the above Proposition with 2’.:f is
quasiconcave, and 4’.: i.e., f is locally nonsatiated. Therefore, an equivalent version Proposition 39 is the following one.

Proposition 40 Let the function f : X ⊆ RC → R be given. If
1’. f is quasiconcave;
2. f is continuous;
3. Int ({x ∈ X : f (x) ≥ f (x)}) 6= ∅

6In Remark 5.2.b, page 197 of [4], the Author says also “An alternative hypothesis was investigated in [5]”. That assumption is exactly:
Cl (aff (K)) = X or equivalently K⊥ = {0}. Recall that in an Euclidean space, aff (K) is a closed set.

7That assumption is not written in the statement of the Proposition, but it is used in the proof, since the proof uses Proposition 5.14
8[26] is less general than [27]
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4’. f is locally nonsatiated;
5. K is a convex set (and nonempty).
Then,

x solves maxx∈K f (x)⇒ x solves GVI (K,P ).

Our Proposition is as follows.

Proposition 41 If the following assumptions are satisfied
(iv) P is convex valued;
(viii) (Local NonSatiation)
(i.1) K is convex;
(i.2*) K 6= ∅,
then

x solves M (K,P ) and ⇒ x solves GVI (K,P ).

Therefore our results is strictly stronger, simply because we do not need assumptions 2. or 3.

3.2.2 Results in terms of general preferences

The main paper on the topic is [27]. Theorem 3a is the same as ours. Keep in mind that x ∈ ClRC (P (x))
Rmk 20⇔ P is

locally non-satiated.

3.3 Existence conditions

3.3.1 Results in terms of utility functions

In the case of K compact, Corollary 4.4, page 10, in [5] says what follows.9

Proposition 42 If f : X → R satisfies the following assumptions
(i.1) K is convex;
(i.2) K⊥ = {0} ⇒ K 6= ∅;
(i.2*) K 6= ∅;
(i.3) K is compact;
1. f is quasiconcave;
2. f is radially continuous;
3. f is upper semicontinuous;

5. for every x ∈ X which is not a global maximum , ∅ 6= Int ({z ∈ X : f (z) ≥ f (x)}) Prop. 76
= {z ∈ X : f (z) > f (x)};

6. x is not a global maximum;
then

maxx∈K f (x)

has a solution.

Our result about existence of a maximal element is as follows.

Proposition 43 If
(i.1) K is convex;
(i.2) K⊥ = {0};
(i.2*) K 6= ∅;
(i..3) K is compact;
(iv) P is convex valued;
(ii) P is lower semicontinuous;
(iii) (Openness like assumption) For any x ∈ X, y ∈ P (x) and z ∈ X\ {y}, we have [z, y) ∩ P (x) 6= ∅;
(vii*) For any x ∈ X, there exists y ∈ P (x) such that for any z ∈ RC\ {y}, [z, y) ∩ P (x) 6= ∅;
(v) (Irreflexivity) For any x ∈ X, x /∈ P (x);
(vi) (Global NonSatiation) P is non-empty valued;
then maxx∈X f (x) has a solution.

All our assumptions are more general that Assumptions 1-8; observe that Assumption 5. can be restated as IntRCP (x) 6=
∅, which implies Assumption (vii*).

9In the quoted theorem, a coercivity condition replaces compactness of K.
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3.3.2 Results in terms of general preferences

The main paper on the topic is [27]. Conditions presented in Theorem 4, page 885, are the following ones:
K is convex, K 6= ∅, K is compact, � is upper semicontinuous, P is convex valued, for any x ∈ X, x /∈ P (x).10

Our result is more general because of Proposition 82 in Appendix 6.2, which says that our assumption on lower semi-
continuity of P is strictly more general than assumption of lower semicontinuity of � in [27].

4 Existence of equilibria in an exchange economy

4.1 Definition of equilibrium

We consider a pure exchange economy in which C ∈ N different commodities or goods, denoted by c ∈ C := {1, 2, . . . , C},
are traded among H ∈ N households or consumers, denoted by h ∈ H := {1, 2, ...,H}. Each consumer h ∈ H is described
by a consumption space Xh ⊆ RC , an endowment eh ∈ Xh and a set valued preference function Ph : (×h′∈HXh′) ⇒ Xh,
where for any x ∈ ×h′∈HXh′ , Ph (x) is interpreted as the set of consumption vectors in Xh strictly preferred to xh for
given (xh′)h′∈H\{h}. We define X = (×h′∈HXh′), P = ×h∈HPh and P as the set of all P .

We denote xch ∈ R and ech ∈ R as the consumption and the endowment of commodity c of household h, respectively11.
We define xh = (xch)c∈C ∈ Xh, x = (xh′)h′∈H ∈ X and similarly eh = (ech)c∈C ∈ Xh, e = (eh′)h′∈H ∈ X. Moreover, we
denote by pc ∈ R the price of commodity c and p = (pc)c∈C ∈ RC .
We define an economy as an element E = (e, P ) ∈ X × P . All the analysis we present applies to any E satisfying some
properties described below.
The budget constraint set valued function is defined as follows. For any h ∈ H,

βh : RC ⇒ Xh, βh (p) = {xh ∈ Xh : 〈p, xh − eh〉C ≤ 0} . (37)

Definition 44 A vector (x̃, p̃) ∈ X × RC is an equilibrium for the economy E ∈ E if

1. Given E ∈ E and p ∈ RC , for any h ∈ H , x̃h is a a maximal element for Ph on βh(p̃), i.e.,

x̃h ∈ βh(p̃) and Ph(x̃) ∩ βh(p̃) = ∅; (38)

2. x̃ satisfies market clearing conditions, i.e., ∑
h∈H

(x̃h − eh) = 0. (39)

Assumptions. For any h ∈ H,

(i) Xh is non-empty, closed, convex and bounded below12;

(ii) Ph is lower semicontinuous;

(iii) (Openness like assumption) For any x ∈ X, yh ∈ Ph (x) and zh ∈ Xh\ {yh}, we have [zh, yh) ∩ Ph (x) 6= ∅.

(iv) Ph is convex valued.

(v) (Irreflexivity) For any x ∈ X, xh /∈ Ph (x) .

(vi) (Global Nonsatiation) For any x ∈ X, there exists yh ∈ Xh such that yh ∈ Ph (x).

(vii*) For any x ∈ X, there exists y ∈ P (x) such that for any z ∈ RC\ {y}, [z, y) ∩ P (x) 6= ∅;

(vii) eh ∈ IntRC (Xh).

Define the so-called augmented preference set-valued function P̂h as follows.

P̂h : X ⇒ Xh,

x⇒ ∪yh∈Ph(x) (xh, yh] = {(1− λ)xh + λyh : yh ∈ Ph (x) and λ ∈ (0, 1]} .

Remark 45 Augmented preferences were introduced in [16].

10In [27], assumption P nonempty valued is assumed; our proof can be easilty extended to their case.
11Given v, w ∈ RN , we denote by v � w, v ≥ w and v > w the standard binary relations between vectors. Also the definitions of the sets

RN
+ and RN

++ are the common ones.
12Xh ⊆ RC is bounded below if there exists xh ∈ RC such that for any xh ∈ Xh, we have xh ≥ xh.
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Proposition 46 For any h ∈ H, if Ph satisfies Assumptions (ii) - (vii*), then P̂h satisfies the following properties.

(i) For any x ∈ X, Ph (x) ⊆ P̂h (x);

(ii) P̂h is lower semicontinuous;

(iii) (Openness like assumption) For any x ∈ X, rh ∈ P̂h (x) and zh ∈ Xh\ {rh}, we have [zh, rh) ∩ P̂h (x) 6= ∅;

(iv) P̂h is convex valued on X;

(v) (Irreflexivity) For any x ∈ X, xh /∈ Ph (x);

(vi) (Global Nonsatiation) For any x ∈ X, yh ∈ Xh such that yh ∈ P̂h (x).

(vii) for any yh ∈ P̂h (x), [yh, xh) ⊆ P̂h (x);

(viii) (Local Nonsatiation) For any x ∈ X, ε > 0, there exists yh ∈ B (xh, ε) such that yh ∈ P̂h (x).

(vii*) For any x ∈ X, there exists y ∈ P̂ (x) such that for any z ∈ RC\ {y}, [z, y) ∩ P̂ (x) 6= ∅;

Proof. For a detailed proof of (i) - (vii) see Proposition 4.1, page 27 in [1]. The proof of (viii) is obvious. The proof
of (vii*) is obvious as well, and we present it below just for completeness. We assume that For any x ∈ X, there
exists y ∈ P (x) such that for any z ∈ RC\ {y}, [z, y) ∩ P (x) 6= ∅; we want to show that For any x ∈ X, there exists

y′ ∈ P̂ (x) such that for any z ∈ RC\ {y′}, [z, y′)∩ P̂ (x) 6= ∅. Take y′ = y ∈ P (x)
(i)

⊆ P̂ (x). Then, for any z ∈ RC\ {y},

∅ 6= [z, y′) ∩ P (x)
(i)

⊆ [z, y′) ∩ P̂ (x).

It is easy to see that “equilibria in terms of P̂” are “equilibria for the true economy with preferences described by P”,
as formalized below.

Proposition 47 If (x̃, p̃) is an equilibrium for the economy
(
e, P̂

)
, then (x̃, p̃) is an equilibrium for the economy (e, P ).

Proof. We have to prove that for any h ∈ H,

Ph(x̃) ∩ βh(p̃) = ∅,

which is obvious because, by assumption,
P̂h(x̃) ∩ βh(p̃) = ∅

and from Proposition 46.i, we have Ph(x̃) ⊆ P̂h(x̃).
As a consequence of Proposition 47, to show existence of an equilibrium for an economy (e, P ), it suffices to show

existence of an equilibrium for an economy
(
e, P̂

)
which is what is done in the remainder of the Section.

4.2 Definition of the budget set valued function and its properties

Using a standard trick, in this subsection we define a fictitious budget set-valued function in which, for any h ∈ H, we
add the constraint xh ≤ r′ := r+M · 1G where r :=

∑
h∈H (|ech|+ |xch|)c∈C and M > 0; we first show existence with the

“artificial bound r′” and then without it.
We restrict our search for equilibrium prices to the closed unit ball B :=

{
p ∈ RC : ‖p‖ ≤ 1

}
. To avoid problems in

showing needed properties of the budget set-valued function, we further modify it adding the extra term 1− ‖p‖ to the
right hand side of the inequality that defines it. Bergstrom was the first author to use this trick - see [9].

Proposition 48 For any h ∈ H, the set-valued function

β′h : B → Xh, β′h (p) = {xh ∈ Xh : 〈p, xh − eh〉C ≤ 1− ‖p‖ and xh ≤ r′}

is

1. nonempty valued and convex valued;

2. closed;

3. compact valued;

4. lower semicontinuous;

5. upper semicontinuous.
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Proof. 1.
For any p ∈ B, take xh = eh . Convexity follows from the fact that the constraint functions are affine and Xh is convex.
2.
Let (pn)n∈N ∈ B∞ be a sequence such that lim

n→+∞
pn = p and let (xh,n)n∈N ∈ (Xh)

∞
be such that xh,n ∈ β′h(pn) and

lim
n→+∞

xh,n = xh. We want to show that xh ∈ β′h (p). First of all, observe that since Xh is closed from Assumption (i),

then xh ∈ Xh. Moreover, we have that for any n ∈ N,

xh,n ≤ r′

〈pn, xh,n − eh〉C ≤ 1− ‖pn‖

Then, all the functions involved in the left hand sides of the above inequalities are continuous and taking limits we get
that xh ∈ β′h(p), as desired.
3.
For any p ∈ B, β′h(p) is closed because defined in terms of continuous functions and weak inequalities. β′h(p) is bounded
below by Assumption (i) and bounded above by r′.
4.
To prove the lower semicontinuity of β′h, we define the set-valued function

β′′h : B ⇒ Xh,

β′′h (p) = {xh ∈ Xh : xh ∈ Int (Xh) , xh << r′, and 〈p, xh − eh〉C < 1− ‖p‖ .}

First of all, let’s show that
β′′h is non-empty valued. (40)

If p = 0, then eh ∈ Int (Xh), from Assumption (vii), eh ≤
∑
h′∈H

(
(|ech′ |)c∈C

)
<< r′and 0 = 〈p, eh−eh〉C < 1−‖p‖ = 1.

Now suppose that p 6= 0; observe that there exists ε > 0 such that B (eh, ε) ⊆ Xh, because eh ∈ Int (Xh), from
Assumption (vii). Define x∗h = (x∗ch )c∈C such that

x∗ch =

 ech − 1
n if pc > 0,

ech if pc = 0,
ech + 1

n if pc < 0,

with n ∈ N large enough so that x∗h ∈ B (eh, ε) ⊆ Xh and x∗h << r′ . Then, x∗h ∈ Int (Xh), x∗h << r′, and

〈p, xh − eh〉C = − 1

n

∑
c∈C
|pc| < 0 ≤ 1− ‖p‖ .

Now to show that β′h is lower semicontinuous, we go through 3 steps. Step 1. β′h is the closure of β′′h . Step 2. β′′h is
lower semicontinuous. Step 3. Desired result.
Step 1. β′h = Cl (β′′h).
We go through three substeps: i. for any p ∈ B

Int (β′h (p)) = β′′h (p)
(40)

6= ∅; (41)

ii. Cl(Int(β′h (p))) = Cl (β′h (p)) ;
iii. desired result.
i.
· β′′h (p) ⊆ Int(β

′(p)
h )

By definition, β′′h (p) ⊆ β′h (p) and then Int(β′′h (p)) ⊆ Int(β′h (p)). Since β′′h (p) is an open set, then β′′h (p) = Int(β′′h (p)).
Hence β′′h (p) ⊆ Int(β′h (p)).
· · Int(β′h) ⊆ β′′h .
Take x̂h ∈ Int(β′h (p)). Then, there exists δ > 0 such that B (x̂h, δ) ⊆ β′h (p) ⊆ Xh and then x̂h ∈ Int (Xh). Suppose now
our desired result does not hold true, i.e., x̂h /∈ β′′h (p) , i.e., it is not the case that

x̂h << r′ or 〈p, x̂h − eh〉C < 1− ‖p‖ .

Since x̂h ∈ Int(β′h (p)) ⊆ β′h (p), we have that either ∃ c ∈ C such that x̂ch = (r′)c or 〈p, xh − eh〉C = 1− ‖p‖.
If ∃ c ∈ C such that x̂ch = (r′)c, then take ̂̂xh such that

̂̂xc′h =

 (r′)c
′

if c′ 6= c,

(r′)c + 1
n if c′ = c.
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Since x̂h ∈ Int(β′h (p)), for n large enough, ̂̂xh ∈ β′h (p); but ̂̂xc′h > (r′)
c
, contradicting the definition of β′h.

If 〈p, x̂h − eh〉C = 1 − ‖p‖, we get a contradiction as well. Indeed, if p = 0, then we get 0 = 1. If p 6= 0, then take
x̂h + 1

n (sign pc)c∈C , which for n large enough belongs to B (x̂h, δ) ⊆ β′h(p). Then,

1− ‖p‖ ≥ 〈p, x̂h +
1

n

(
(sign pc)c∈C

)
− eh〉C = 1− ‖p‖+

∑
c∈C

1

n
|pc| > 1− ‖p‖ ,

a contradiction.
ii.
It follows from Proposition 61 in the Appendix.
iii.
Observe that β′h(p) is closed (recall that Xh is closed) and that β′′h(p) is open valued because defined in Int (Xh) and in
terms of strict inequalities. Then

∅
(41)

6= Intβ′h(p) = β′′h(p) = Int (β′′h(p)) . (42)

Then, we can apply again apply the result mentioned in ii. above to get

Cl (β′′h(p))
(42)
= Cl (Intβ′h(p))

(1)
= β′h(p),

where (1) follows from the fact that β′h(p) is closed.
Step 2. β′′h is lower semicontinuous
β′′h(p) is not empty from (41). For every sequence (pn)n∈N such that lim

n→+∞
pn = p let xh ∈ β′′h(p). Then,

lim
n→+∞

(
〈pn, xh − eh〉C − (1− ‖pn‖) =

(
〈p, xh − eh〉C − (1− ‖p‖) < 0,

and
lim

n→+∞
xh − r′ = x− r′ << 0,

Therefore, there exists ν ∈ N such that for all n > ν, we have xh ∈ β′′h(pn). Then, we can choose the sequence (xh,n)n∈N
as xh,n = xhand we can conclude that β′′h is lower semicontinuous.
Step 3. β′h is lower semicontinuous.
Since β′h is the closure of a lower semicontinuous set valued function, then the desired result follows from Proposition
69 in the Appendix.
5.
It follows from the four results above and Proposition 71 in the Appendix.

4.3 The Variational Inequality problem

In this section we introduce the variational inequality problem which allows us to show existence of equilibria.
First of all, consider the set-valued function

Gh : Xh ⇒ Xh, Gh(xh) = conv
(
N>
h (xh) ∩ S(0, 1)

)
where S(0, 1) = {x ∈ RC : ‖x‖C = 1} is the unit sphere of RC and N>

h (xh) is the normal cone to Ph (x). Define also
the set valued map β′ = ×h∈Hβ′h.
We introduce the following variational problem

Find (x̃, p̃) ∈ β′(p̃)×B and g = (gh)h∈H ∈ ×h∈HGh(x̃h) such that

for any (x, p) ∈ β′(p̃)×B,
∑
h∈H〈−gh, xh − x̃h〉C + 〈

∑
h∈H(x̃ h − eh)), (p− p̃))〉C ≤ 0.

(43)

Remark 49 (x̃, p̃) ∈ β′ (p̃)×B is a solution to (43) if and only if, each of the following statements holds true,.
1. for any h ∈ H, there exists x̃h ∈ β′h(p̃) and gh ∈ Gh(x̃h) such that

〈−gh,, xh − x̃h〉G ≤ 0 ∀xh ∈ β′h(p̃); (44)

2.
〈
∑
h∈H

(x̃ h − eh)), (p− p̃ ))〉C ≤ 0, ∀p ∈ B. (45)
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In our analysis, we are going to us the following Variational Inequality problem and the related existence result presented
in Theorem 78 in the Appendix.
A Generalized Quasi-Variational Inequality associated with K,F , denoted by GQVI, is the following problem:

“Find x ∈ K(x) and u ∈ F (x) such that for any x ∈ K(x), 〈u, x− x〉 ≥ 0.” (46)

Theorem 50 The variational problem (43) admits at least one solution.

Proof. To get the desired result, we apply Theorem 78 . We define C,K and F and we check the desired assumptions
are satisfied.
� C := conv(β′(B))×B ⊆ RCH × RC := Rl is nonempty, convex and compact.
B is nonempty and compact; from Proposition 48, we have that β′ is nonempty, convex and compact valued, closed and
lower semicontinuous and upper semicontinuous on B and conv(β′(B) is (nonempty) convex and compact as well. In
the above argument, we use Propositions 70, 71 and 72 in the Appendix.
� The set-valued function

K : C ⇒ RCH × RC , K(x, p) = β′(p)×B.

is nonempty, convex, compact valued, closed, lower semicontinuous and upper semicontinuous.
It follows from what said above.
� The set-valued function

F : C ⇒ RCH × RC , F (x, p) = ×h∈H(Gh(xh)×

{
−
∑
h∈H

(x h − eh))

}
.

is nonempty, convex, compact valued, closed and upper semicontinuous.
The set-valued function Gh is basically equal to the set-valued function G, presented in Definition 29: the fact that the
domain of P̂h is X and not Xh does not change of the results obtained there. Observe that P̂h satisfies all the properties
listed in Proposition 46. Moreover, eh ∈ β′h (p) ∩ (IntRC (Xh)). Then, from the proof of Proposition 36, we have that
for any h ∈ H, Gh is nonempty, convex, compact valued, closed and upper semicontinuous. Furthermore the other
components of F are continuous functions. Then all assumptions of Theorem 78 are satisfied and we can conclude that

∃ (x̃, p̃) ∈ β′ (p̃)×B and (g̃, r̃) ∈ ×h∈H(Gh(x̃h)×
{
−
∑
h∈H(x̃h − eh))

}
such that
∀ (x, p) ∈ β′ (p̃)×B, 〈(g̃, r̃) , (x, p)− (x̃, p̃)〉 ≥ 0,

or
∃ p̃ ∈ B and ∀h ∈ H ∃ x̃ ∈ β′ (p̃) and g̃ ∈ ×h∈H(Gh(x̃h)
such that
∀p ∈ B, ∀h ∈ H ∀xh ∈ β′h (p̃)

∑
h∈H〈gh, xh − x̃h〉C + 〈−

∑
h∈H(x̃ h − eh)), (p− p̃))〉C ≥ 0,

i.e., the Variational Inequality problem (43) admits at least a solution.

4.4 Existence of equilibrium

Theorem 51 Let
(x̃, p̃, g) ∈ β′ (p̃)×B × (×h∈H(Gh(x̃h))

be a solution to the Variational Inequality Problem (43). Then, the following results hold true.
1. for any h ∈ H, x̃h is optimal in β′h(p̃), i.e.,

x̃h ∈ β′h((p̃) and

P̂h(x̃) ∩ β′h((p̃) = ∅;
(47)

2.
∑
h∈H (x̃h − eh) = 0;

3. Budget constraints hold true as equalities, i.e., for any h ∈ H

〈p̃, x̃h − eh〉C = 1− ‖p‖ ,

4. ‖p̃‖ = 1.

Proof. 1.
By assumption and from Remark 49 for any h ∈ H, there exists x̃h ∈ β′h(p̃) and gh ∈ Gh(x̃h) such that for any
xh ∈ β′h(p̃), we have 〈−gh,, xh − x̃h〉G ≤ 0. Moreover, from (41), we have that for any p ∈ B, Intβ′h (p) 6= ∅ and

therefore from Proposition 60 in the Appendix, we have (β′h (p̃))
⊥

= {0}. From Proposition 48, β′h (p̃) is nonempty,

convex and compact. Summarizing β′h (p̃) satisfies assumptions (i.1), (i.2), (i.2*), (i.3), and from Proposition 46, P̂h
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satisfies assumptions (ii), (iii), (iv), (v), (vii*): therefore, we can apply Proposition 36.2.a, identifying K,P there with

β′h (p̃) , P̂h here to conclude that x̃h is a solution to M
(
β′h (p̃) , P̂h

)
, as desired.

2. Define
z̃ =

∑
h∈H

(x̃h − eh) .

Then, from (45),

for any p ∈ B, 〈p, z̃〉C ≤ 〈p̃, z̃〉 ≤ H · (1− ‖p̃‖) , (48)

where last inequality follows from the fact that for any h ∈ H, x̃h ∈ β′ (p̃).
Now suppose our claim is false, i.e., z̃ 6= 0. Then,

for any p ∈ B, 〈p, z̃

‖z̃‖
〉C ≤ 〈p̃,

z̃

‖z̃‖
〉,

i.e., p̃ ∈ B solves the problem

for given
z̃

‖z̃‖
∈ B, max

p∈B
p
z̃

‖z̃‖
.

From Cauchy-Schwarz inequality,p z̃
‖z̃‖ ≤ ‖p‖ ·

∥∥∥ z̃
‖z̃‖

∥∥∥ ≤ 1 and z̃
‖z̃‖ ·

z̃
‖z̃‖ = 1 ; then, we have p̃ = z̃

‖z̃‖ and ‖p̃‖ = 1. Then,

from (48),

0 = H · (1− ‖p̃‖) ≥ 〈p̃, z̃〉 =

〈
z̃

‖z̃‖
, z̃

〉
= ‖z̃‖ > 0,

which is the desired contradiction.
3.
Suppose our claim is false and there exists h ∈ H such that

〈p̃, x̃h − eh〉C < 1− ‖p‖ . (49)

By Assumption (viii), i.e., Local NonSatiation, there exists xh ∈ Xh such that [xh, x̃h) ⊆ P̂h (x̃). From (49), we can

choose x′h ∈ [xh, x̃h) such that x′h ∈ β′h (p̃). Then x′h ∈ β′h (p̃) ∩ P̂h (x̃), contradicting part 1. above.
4.

0
2. above

= p̃z̃
3. above

= H · (1− ‖p̃‖) ,

as desired.

Theorem 52 For any economy (e, P̂ ) with the upper bound r′, there exists an equilibrium vector

(x̃, p̃) ∈ β′(p̃)×B.

Proof. From Theorem 51, x̃ satisfies market clearing and since ‖p̃‖ = 1 also the the budget constraints of each
households.

Proposition 53 Under Assumption from (i) to (vii), and (vii**), for any economy (e, P ) ∈ X × P an equilibrium
exists.

Proof. We are going to show that (x̃, p̃) is an equilibrium (without bound). Indeed, we are left with showing that for
any h ∈ H,

x̃h ∈ βh(p̃) = {xh ∈ Xh : 〈p, xh − eh〉C ≤ 0} and Ph(x̃) ∩ βh(p̃) = ∅; (50)

Below we present a proof using the variational inequality problem; a proof can be also provided directly in terms of the
maximal problem M (K,P ) .
First of all, observe that x̃h ∈ β′h (p̃) ⊆ βh (p̃). For any h ∈ H, by assumptions, we have that ∃ gh ∈ Gh (xh) such that

∀xh ∈ β′h(p̃), 〈−gh, xh − x̃h〉C ≤ 0. (51)

We want to prove that
∀xh ∈ βh (p̃) , 〈−gh, xh − x̃h〉C ≤ 0.

Suppose otherwise, i.e., ∃xh ∈ βh (p̃) such that

〈−gh, xh − x̃h〉C > 0, (52)

and therefore
xh 6= x̃h (53)
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Since xh ∈ βh (p̃), and βh is convex, then ∀λ ∈ (0, 1), we have x̂h = (1− λ) x̃h + λxh ∈ βh (p̃). Moreover,

〈−gh, x̂h − x̃h〉C = λ〈−gh, xh − x̃h〉C > 0. (54)

Now, for any δ > 0, ‖x̂h − x̃h‖ = λ‖xh − x̃h‖ < δ ⇔ λ < δ
‖xh−x̃h‖ . Then, choosing λ < min

{
1, δ
‖xh−x̃h‖

}
, we have that

x̂h ∈ β (p̃) ∩ B (x̃h, δ) . (55)

Recall that
β′h (p̃) := βh((p̃) ∩ [xh, r

′] , (56)

where xh is the lower bound for Xh. Moreover, from market clearing, x̃h =
∑
h′∈H ẽh′ −

∑
h′∈H\{h} x̃h′ ≤

∑
h′∈H ẽh′ −∑

h′∈H\{h} xh′ << r′, where last inequality follows from the definition of r′. Then,

there exists δ > 0 such that B (x̃h, δ) ∩Xh ⊆ [xh, r
′] . (57)

Then

βh(p̃) ∩ B (x̃h, δ)
βh(p̃)⊆Xh

⊆ βh(p̃) ∩ B (x̃h, δ) ∩Xh

(57)

⊆ βh(p̃) ∩ [xh, r
′]

(56)
= β′h(p̃). (58)

From (55) and (58),

x̂h ∈ β′h(p̃). (59)

Then (54) and (59) contradict (51).

5 Comparison with the available exchange economy results

5.1 Variational Inequality literature

5.1.1 Results in terms of utility functions

To the best of our knowledge, the most general result on existence of equilibria for an exchange economy using a
Variational Inequality approach is the one contained in [14]13. Using our notation, the existence result presented there
is as follows.

Theorem 54 Assume that preferences of consumer h ∈ H are represented by an utility function uh : Xh → R and that
for any h ∈ H,
0. Xh is a closed, convex, bounded below subset of RC ,
1. uh is continuous,
2. uh has no global maximum,
3. uh is semistrictly quasi concave,
Assumption (i) and (vii) hold true.
Then an equilibrium exists.

Indeed, their proof quotes a result in [6] in which Xh = RC . In any case, from Proposition 83, our result is more general
than the above one.

5.1.2 Results in terms of general preferences

The main paper on the topic is [27].14

The assumptions of Theorem 8 in [27] are what follows:
for any h ∈ H

(i) Xh = RC+;

(ii) �h is lower and upper semicontinuous;

(iv) �h is convex valued.

(v) (Irreflexivity) For any x ∈ X, xh /∈ Ph (x) .

13Indeed, they analyze a model with production, an extension which can be analyzed using the approach we follow.
14[25] is less general than [27].

19



(vi) (Global Nonsatiation) For any x ∈ X, there exists yh ∈ Xh such that yh ∈ Ph (x).

(vii) xh ∈ ClRC (P (xh)), i.e., local nonsatiation.

The Assumptions in Proposition 36 are what follows:

For any h ∈ H,

(i) Xh is non-empty, closed, convex and bounded below;

(ii) Ph is lower semicontinuous;

(iii) (Openness like assumption) For any x ∈ X, yh ∈ Ph (x) and zh ∈ Xh\ {yh}, we have [zh, yh) ∩ Ph (x) 6= ∅.

(iv) Ph is convex valued.

(v) (Irreflexivity) For any x ∈ X, xh /∈ Ph (x) .

(vi) (Global Nonsatiation) For any x ∈ X, there exists yh ∈ Xh such that yh ∈ Ph (x).

(vii*) For any x ∈ X, there exists y ∈ P (x) such that for any z ∈ RC\ {y}, [z, y) ∩ P (x) 6= ∅;

(vii) eh ∈ IntRC (Xh).

In [27] assumption (vii) is not assumed, but it refer to [25] and [26], in which assumption (vii) is made. In any case, our
proof is strictly more general than their proof because of the following facts.
1. Lower semicontinuity of �h, i.e., P is open valued, implies Assumption (iii), but not viceversa - see Proposition 84
in Appendix 6.2.
2. Upper semicontinuity of �h implies Assumption (ii), but not viceversa - see Proposition 82 in Appendix 6.2
3. Our assumption (i) implies their assumption (i) and not viceversa.
4. We do not assume local nonsatiation.
5. Theorem 8 of [27] does not contain Assumption (i.2**) which should be used to get statement xn = x′ + 1

nh ∈ U(x),
as we observed in Section 3.2.

5.2 Economic literature

Below we present the statements of some general existence results which are available in the economic literature and we
compare those results with ours.

Proposition 55 ([8]) An equilibrium exists if the following Assumptions are satisfied.

For any h ∈ H,

(i) Xh is non-empty, closed, convex and bounded below;

(iii B) For any x ∈ X, P−1 (x) := {x′ ∈ X : x ∈ P (x′)} is open.

(iv new) For any x ∈ X, xh /∈conv(Ph (x)) .

(vi) (Global Nonsatiation) For any x ∈ X, there exists yh ∈ Xh such that yh ∈ Ph (x).

(vii) eh ∈ IntRC (Xh).

From Proposition 84 in Appendix 6.2 our result and Bergstrom’s are independent.

Proposition 56 ([16] and [17]) An equilibrium exists if the following Assumptions are satisfied.
For any h ∈ H,

(i) Xh is non-empty, closed, convex and bounded below15;

(ii) Ph is lower semicontinuous;

(iii minus) (Openness assumption) Ph is open valued;

(iv) Ph is convex valued.

(v) (Irreflexivity) For any x ∈ X, xh /∈ Ph (x) .

15Xh ⊆ RC is bounded below if there exists xh ∈ RC such that for any xh ∈ Xh, we have xh ≥ xh.
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(vi) (Global Nonsatiation) For any x ∈ X, there exists yh ∈ Xh such that yh ∈ Ph (x).

(vii) eh ∈ IntRC (Xh).

Remark 57 The above result is strictly less general than ours because (iii minus) implies (iii) and (vii*) - and not vice
versa.

Proposition 58 ([18]) An equilibrium exists if the following Assumptions are satisfied.

For any h ∈ H,

(i) Xh is non-empty, closed, convex and bounded below;

(ii) Ph is lower semicontinuous;

(iii) (Openness like assumption) For any x ∈ X, yh ∈ Ph (x) and zh ∈ Xh\ {yh}, we have [zh, yh) ∩ Ph (x) 6= ∅.

(iv new) For any x ∈ X, xh /∈conv(Ph (x)) .

(vi) (Global Nonsatiation) For any x ∈ X, there exists yh ∈ Xh such that yh ∈ Ph (x).

(vii) eh ∈ IntRC (Xh).

Remark 59 The above result is strictly more general than ours because (iv) and (v) imply (iv new) - and not vice
versa.

6 Appendix.

6.1 Some needed results on convexity and set valued functions

Proposition 60 IntRC (K) 6= ∅⇒ K⊥ = {0}.

Proof. We want to show that if z ∈ RC\ {0}, then z /∈ K⊥, i.e., there exist x, y ∈ K such that z (x− y) 6= 0. By
assumption, there exists x∗ ∈ K and r > 0 such that B (x∗, r) ⊆ K. Then there exists λ > 0 and sufficiently small such
that x := x∗ + λz and y := x∗ − λz belong to B (x∗, r) ⊆ K. Then,

〈z, x− y〉 = 〈z, x∗ + λz − (x∗ − λz)〉 = 2λ〈z, z〉 > 0,

as desired.

Proposition 61 (Corollary 2.3.9, page 64, in [32])If K is a convex subset of Rn such that Int (K) 6= ∅, then Cl (Int K) =
Cl K.

Proposition 62 (Theorem 2.4.10, page 70 in [32]) Let A and B be nonempty convex sets in RC . If A ∩ B = ∅, then
there exists h ∈ RC\ {0} such that

∀a ∈ A, ∀b ∈ B, 〈h, a〉 ≤ 〈h, b〉 .

Proposition 63 (Corollary 2.5.5, page 76 in [32]) Let A be a nonempty set of RC . A is a convex cone if and only if
for any a, b ∈ A and any scalar λ, µ ≥ 0, λa+ µb ∈ A.

Proposition 64 If ϕ : X ⇒ Y is non-empty valued and is open graph, i.e.,

graph ϕ := {(x, y) ∈ X × Y : y ∈ ϕ (x)} is ((X, d)× (Y, d′)) -open,

then ϕ is lower semicontinuous.

Proof. We are going to show that for any x ∈ X and for every sequence (xn)n∈N ∈ X∞ such that xn → x, and
for every y ∈ ϕ (x), there exists a sequence (yn)n∈N ∈ Y∞ such that ∀ n ∈ N, yn ∈ ϕ (xn) and yn → y. Since by
assumption y ∈ ϕ (x), we have that (x, y) ∈ graph ϕ. Therefore, still by assumption there exist rx, ry ∈ R++ such
that B(X,d) (x, rx) × B(Y,d′) (y, ry) ⊆ graph ϕ. Then, since xn → x, there exists Nx ∈ N such that for any n > Nx,

xn ∈ B(X,d) (x, rx). Take n′ ≥ max
{
n, 1

r′

}
. Then, for n ≥ n′, xn ∈ B(X,d) (x, rx) and B(Y,d′)

(
y, 1

n

)
⊆ B(Y,d′) (y, ry) and

also B(X,d) (x, rx)× B(Y,d′)
(
y, 1

n

)
⊆ graph ϕ. . Therefore,

∀n ≥ n′, there exists yn ∈ Y such that yn ∈ B(Y,d′)
(
y,

1

n

)
and yn ∈ ϕ (xn) ,

as desired.
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Proposition 65 If ϕ : X ⇒ Y is non-empty valued and

for any y ∈ Y , ϕ−1 (y) := {x ∈ X : y ∈ ϕ (x)} is open,

then ϕ is lower semicontinuous.

Proof. Again, we are going to show that for any x ∈ X and for every sequence (xn)n∈N ∈ X∞ such that xn → x,
and for every y ∈ ϕ (x), there exists a sequence (yn)n∈N ∈ Y∞ such that ∀ n ∈ N, yn ∈ ϕ (xn) and yn → y. Since
by assumption ϕ is not empty-valued, then we can take y ∈ ϕ (x) and therefore x ∈ ϕ−1 (y). Since ϕ−1 (y) is open by
assumption, then there exists N ∈ N such that for any n > N , xn ∈ ϕ−1 (y), i.e., for any n > N , y ∈ ϕ (xn). Then, for
any n > N , take yn = y, and the proof is concluded.

Definition 66 A function f : X ⊆ Rn → R, with X convex, is said to be

(i) quasiconcave iff for any x, y ∈ X and λ ∈ [0, 1] one has

f(λx+ (1− λ)y) ≥ min{f(x), f(y)} ;

(ii) semistrictly quasiconcave iff for any x, y ∈ X such that f(x) 6= f(y), one has

f(λx+ (1− λ)y) > min{f(x), f(y)}, ∀λ ∈ (0, 1) ;

Definition 67 Given a function f : X ⊆ Rn → R, we say that f is

- Locally NonSatiated if ∀x ∈ X and ∀ε > 0, ∃x′ ∈ B (x, ε) such that f (x′) > f (x);

- (Globally) NonSatiated if ∀x ∈ X ∃x′ ∈ X such that f (x′) > f (x).

Proposition 68 If X is a convex metric space and f : X → R is continuous, then
f is semistrictly quasiconcave and NonSatiated if and only if f is quasiconcave and Locally NonSatiated.

Proposition 69 (Proposition 2.38, page 50 in [22]) If a set-valued function ϕ : X ⇒ Y is lower semicontinuous if and
only if Cl (ϕ) is.

Proposition 70 (Proposition 3, page 24 in [20]) If a set-valued function ϕ : X ⇒ Y is upper semicontinuous and
compact valued, and A ⊆ X is a compact set, then ϕ (A) is compact.

Proposition 71 (Proposition 4, page 25 in [20]) For any i ∈ {1, ..., n}, let the the set-valued functions ϕi : X ⇒ Y be
compact valued and upper semicontinuous at x ∈ X. Then, the set-valued function ϕ : X ⇒ Y n, ϕ (x) = ×ni=1ϕi (x) is
compact valued and upper semicontinuous at x.

Proposition 72 (Proposition 8, page 27 in [20]) For any i ∈ {1, ..., n}, let the the set-valued functions ϕi : X ⇒ Y be
lower semicontinuous at x ∈ X. Then, the set-valued function ϕ : X ⇒ Y n, ϕ (x) = ×ni=1ϕi (x) is lower semicontinuous
at x.

Proposition 73 (Theorem 2.2.6, page 57 in [32]) If C ⊆ Rn is compact, then conv(C) is compact.

Proposition 74 (Lemma 1, page 33, in [20]) If a set-valued function ϕ of a metric space in Rn is non-empty valued,
compact valued, convex valued, closed and lower semicontinuous. Then ϕ is upper semicontinuous.

Proposition 75 ([20], bottom page 23) If ϕ : X ⇒ Y is a set valued function which is closed graph and if ϕ (X) is
contained in a compact set, then ϕ is upper semicontinuous.

Proposition 76 ([10])If f is upper semicontinuous, quasiconcave and Int ({x ∈ X : f (x) ≥ f (x)}) 6= ∅, then

∀x ∈ X, ({x ∈ X : f (x) > f (x)}) = Int ({x ∈ X : f (x) ≥ f (x)}) .

Proposition 77 (Theorem 8.1, page 231 in [2]) If
1. C is a nonempty, compact and convex subset of X ⊆ Rn, and
2. F : X ⊆ Rl ⇒ Rl is nonempty valued, compact valued, convex valued and upper semicontinuous on C,
then there exists a solution (x, u) to the following Generalized Variational Inequality Problem.

“Find x ∈ C and u ∈ F (x) such that ∀z ∈ C, 〈u, z − x〉 ≥ 0”.

Theorem 78 ([31])If 1. C is a nonempty, compact and convex subset of X ⊆ Rl,
2. K : X ⇒ Rl is nonempty, compact, convex valued, closed and lower semicontinuous on C,
2’. K (C) ⊆ C,
3. F : X ⇒ Rl is nonempty, compact, convex valued and upper semicontinuous on C,
then the GQVI Problem (46) admits at least a solution.

22



6.2 Results to relate our work with the one available in the literature

Proposition 79 1. f : X ⊆ RC → R is quasiconcave if and only if for any x ∈ X, P (x) is convex.
2. If f : X ⊆ RC → R is radially continuous on X with respect to X, then P satisfies Assumption (iii).
3. The opposite implication of the one presented in 2. is false

Proof. 1. Obvious.
2. We want to show that for any x ∈ X, y ∈ P (x) and z ∈ X\ {y}, we have [z, y) ∩ P (x) 6= ∅, i.e., in terms of the
function f , for any x ∈ X, y ∈ X such that f (y) > f (x) and z ∈ X\ {y}, we have that there exists w ∈ [z, y) such that
f (w) > f (x).
If f (z) > f (x), then z ∈ P (x). If f (z) ≤ f (x), then proceed as follows. Consider the segment [z, y] and observe
that by assumption f (z) ≤ f (x) < f (y) . Define the function g : [0, 1] → R, g (t) = f ((1− t) z + ty) and observe
that g (0) = f (z) ≤ f (x) < f (y) = g (1); moreover, since f is radially continuous, then g is continuous. Then from
the intermediate value Theorem for continuous functions applied to g, we have that there exists tw ∈ (0, 1) such that
g (tw) > f (x), i.e., there exists w := (1− tw) z + twy such that g (tw) = f (w) > f (x). In other words, there exists
w ∈ (z, y) such that f (w) > f (x).
3.Let the following function be given.16

f : R2 → R, f (x1, x2) =


x1·(x2)

2

(x1)
2+(x2)

4 if x1 6= 0

0 if x1 = 0.

f admits directional derivatives in zero in any direction and therefore it is radially continuous in zero (f is not
continuous in zero). Now take (y1, y2) ∈ R2 such that (y1, y2) ∈ P (0). i.e., such that y1 > 0 and arbitrary
(z1, z2) ∈ R2\ {(y1, y2)} .Then taken y (λ) := (1− λ) (z1, z2) + λ (y1, y2) with λ ∈ (0, 1] and sufficiently close to zero,
since f is continuous in (y1, y2), we have that y (λ) ∈ P (0), as desired.

Proposition 80 If x solves

(GVI-cone (K,P )) Find x ∈ K such that ∃ h ∈ N> (x) \ {0} such that ∀x ∈ K, 〈h, x− x〉 ≥ 0, (60)

and either 1. Assumptions (i.2), (iii), (iv), (v), (vi) or 2.Assumptions (1.2**), (iii), (iv), (v), (vi) are satisfied, then x solves
M (K,P ).

Proof. The proof below is similar to the proof of Proposition 31.1.
1.
From Remark 25 and Assumption (iv), we know that N> (x) is a convex cone. Now assume our claim is false, i.e., while
from (60), x ∈ K, we have that x /∈M (K,P ), i.e.,

P (x) ∩K 6= ∅. (61)

From (60), we have that
h ∈ N> (x) \ {0} . (62)

Since h ∈ N> (x), we have that
∀w ∈ P (x) , 〈h,w − x〉 ≤ 0. (63)

By assumption (i.2), K⊥ = {0}. From (62) h 6= 0, then h /∈ K⊥, i.e., there exists y ∈ K such that 〈h, y − x〉 6= 0. From
(60),

∃y ∈ K such that 〈h, y − x〉 > 0. (64)

From (61), there exists x ∈ X such that
x ∈ P (x) ∩K. (65)

Now observe that y 6= x. Indeed, if y = x, then from (64), we would have 〈h, x− x〉 > 0. Since from (65), we have
x ∈ P (x) and h ∈ N> (x), we also have 〈h, x− x〉 ≤ 0, a contradiction.
Since, from (65), x ∈ P (x) and y 6= x, we can use Assumption (iii), identifying x ∈ X, y ∈ P (x) , z ∈ X\ {y} there with
x ∈ X,x ∈ P (x) , y ∈ K\ {x} ⊆ X\ {x} here, respectively to conclude that

[y, x) ∩ P (x) 6= ∅. (66)

For any λ ∈ (0, 1], define
x (λ) = (1− λ)x+ λy.

16The example below is a textbook example of the fact that the existence of directional derivative in a point in any direction does not
imply continuity in that point −see [3], page 345.
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Then
〈h, x (λ)− x〉 = 〈h, (1− λ)x+ λy − x+ λx− λx〉 = λ 〈h, y − x〉+ (1− λ) 〈h, x− x〉 > 0,

where the strict inequality follows from (64), (60) and the fact that λ ∈ (0, 1]. Therefore, from (63), ∀λ ∈ (0, 1],
x (λ) /∈ P (x), i.e.,

[y, x) ∩ P (x) = ∅,

contradicting (66).
2.
Suppose otherwise, i.e., since x ∈ K, then

there exists x′ ∈ K such that x′ ∈ P (x). (67)

Then, from Assumption (60), we have

h ∈ N> (x) \ {0} and 〈h, x′ − x〉 ≥ 0. (68)

Since h ∈ N> (x) and since x′ ∈ P (x), we have 〈h, x′ − x〉 ≤ 0, and therefore

〈h, x′ − x〉 = 0. (69)

From Assumption (i.2**) and from (67), we have that there exists ε > 0 such that B (x′, ε) ⊆ X and therefore, since
h 6= 0, there exists α > 0 such that x′+αh ∈ X. Since, from (67), x′ ∈ P (x) and x 6= x′, we can use Assumption (iii) to
conclude that [x′ + αh, x′)∩P (x) 6= ∅, i.e., there exists α∗ ∈ (0, α) such that x′+α∗h ∈ P (x). Then, since h ∈ N> (x),
〈 h, (x′ + α∗h)− x〉 ≤ 0. Finally,

0 ≥ 〈 h, (x′ + α∗h)− x〉 = 〈 h, x′ − x〉+ α∗ ‖h‖2 (69)
= α∗ ‖h‖2 > 0,

the desired contradiction.

Proposition 81 If f is upper semicontinuous at x and x is not a global maximum for f , then P is lower semicontinuous
at x.

Proof. Recall that f : X → R is upper semicontinuous at x if

∀λ > f (x) , ∃δ > 0 such that x ∈ B (x, δ)⇒ λ > f (x) .

We want to show that P is lower semicontinuous at x ∈ X, i.e., P (x) 6= ∅ and for every sequence (xn)n∈N ∈ X∞ such
that xn → x, and for every y ∈ P (x),there exists a sequence (yn)n∈N ∈ X∞ such that ∀ n ∈ N, yn ∈ P (xn) and yn → y.
Nonemptyness follows from the fact x is not a global maximum for f . Since y ∈ P (x), then f (y) > f (x). Since f is
upper semicontinuous at x, then (identified f (y) with λ), we have that ∃δ > 0 such that for any z ∈ B (x, δ), we have
f (y) > f (z). Since xn → x, then there exists N ∈ N such that ∀n > N , xn ∈ B (x, δ) and therefore f (y) > f (xn), i.e.,
for any n > N, y ∈ P (xn). Taking yn = y for any n > N concludes the proof.

Proposition 82 1. If � is upper semicontinuous, then P is lower semicontinuous;
2. The opposite implication is false.

Proof. Recall that

〈 � is upper semicontinuous〉 :=〈
(xn)n∈N ⊆ X∞, xn −→ x, y � x

〉
⇒ 〈 ∃ν ∈ N such that ∀m > ν , y � xm〉

〈 P is lower semicontinuous〉 :=〈
(xn)n∈N ⊆ X∞, xn −→ x, y � x

〉
⇒
〈
∃ (yn)n∈N ∈ X∞ such that i. for any n ∈ N, yn � xn, and ii. yn −→ y

〉
1.
Take yν+n = y for any n ∈ N and consider the sequence (yν+n)n∈N. Then, by assumption, since ν + n > n, we have
yν+n � xν+n and yn −→ y.
2.
Take P : R+ −→−→ R,

P (x) =

 {2} if x ∈ [0, 1] ,

[1, 3] \ {2} if x > 1.

P is lower semicontinuous
Indeed the only point to be checked is x = 1 for which P (x) = {2}. If xn −→ 1 with xn ≤ 1, take yn = 2 for any n ∈ N;
If xn −→ 1 with xn ≥ 1, take yn = −e−xn+1 + 3 for any n ∈ N.
� is not upper semicontinuous. Take xn = 1 + 1

n , y = 2. Then, for any n ∈ N, 2 /∈ P (xn).
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Proposition 83 Assume that f : X ⊆ RC → R has no global maximum.
1. a. f continuous ⇒ (iii) and b. not vice versa;
2. a. f continuous ⇒ (ii) and b. not vice versa.
3. f continuous ⇒(vii) ⇒ (vii*).
4a. f continuous and semistrictly quasi concave ⇒ f quasi concave and b. not vice versa.

Proof. 1a.
Observe that f continuous ⇒ P (x) open ⇒ (iii), where the first implication is obvious and the second one is verified
below.
If P is open valued and y ∈ P (x), then there exists ε > 0 such that B (y, ε) ⊆ P (x). Then for any z ∈ X\ {y}, define
h = z − y ∈ X\ {0}and α = ε

2‖h‖ . Then, for any α ∈ [0, α], we have ‖y − (y + αh)‖ = ‖ah‖ = α ‖h‖ < ε
2‖h‖ ‖h‖ < ε,

and therefore y + αh ∈ B (y, ε) ⊆ P (x) .
1b.
From Proposition 79, we have what follows

f continuous
⇒

:
f radially continuous

⇒

:
Assumption (iii). (70)

If our Claim were false, we would Assumption (iii) ⇒ f continuous and therefore f radially continuous, contradicting
(70).
2a. Since f continuous implies f upper semicontinuous, it is enough to show that f upper semicontinuous implies P is
lower semicontinuous, which is done in Proposition 81.
2b. Below we present an example of a function f : R → R which is not continuous and whose associated P is lower
semicontinuous. Define

f (x) =

 1 if x < 1
2 if x = 1
2 + x if 1 < x

Then

P (x) =

 [1,+∞) if x ∈ (−∞, 1)
(1,+∞) if x = 1
(x,+∞) if x ∈ (1,+∞)

is lower semicontinuous, the only points need a simple checking being x = 1.
3. obvious.
4a. It is the content of Proposition 4.16, page 154, in [19].
4b. Obvious.

Proposition 84 ([8] and [33]) Given x ∈ X, if P−1 (x) is open and P (x) 6= ∅, then P is lower semicontinuous at x.
The opposite implication is not true.

Proof. We want to use the following characterization of lower semicontinuity. A set valued function ϕ : X →→ Y is
lower semicontinuous if for every open set V in Y, {x ∈ X : ϕ (x) ∩ V 6= ∅} is open in X (see for example, my math

2 notes). Observe that
{x ∈ X : ϕ (x) ∩ V 6= ∅} = ∪y∈V ϕ−1 (y) ,

as verified below.
z ∈ {x ∈ X : ϕ (x) ∩ V 6= ∅} ⇔ there exists y ∈ ϕ (z) ∩ V.
z ∈ ∪y∈V ϕ−1 (y) ⇔ there exists y ∈ V such that z ∈ ϕ−1 (y) := {x′ ∈ X : y ∈ ϕ (x′)} ⇔ there exists y ∈ V such that
y ∈ ϕ (z).
For the proof about the opposite implication, see Remark 4.1, page 237, in [33].

6.3 The counterexample in [4]

We proceed as follows.
1. Introduce the example presented by Aussel in [4] using our framework;
2. Show that in that example,
i. all the assumptions of theorem 3.b. in [27] are satisfied: K is nonempty, convex and closed; U (x) is open (and indeed
preferences can be represented by a continuous utility function);
ii. x solves a GVI but it is not a maximal element (because there are no maximal elements).
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iii. Observe that example does not show that our Proposition 31 is false, because the example is such that Assumptions
(i.2) and (i.2**) are violated.
1.
Take X = R+ × R, K = {0} × R and u : X → R, (x1, x2) 7→ x2. The maximization problem we want to analyze is the
following one.

max(x1,x2)∈R+×R x2 s.t. x ∈ {0} × R.

2.
(i.)
K is nonempty, convex and closed; P (x) is open, and indeed preferences are represented by the continuous utility
function u : X −→ R, u (x1, x2) = x2.
(ii.)
We want to show that it is false that

x ∈ K solution to (GVI) ∃h ∈ G(x) : 〈h, x− x〉 ≥ 0,∀x ∈ K ⇒ x ∈ arg maxx∈K u (x).

Observe that, obviously, arg maxx∈K u (x) = ∅.
We are going to show that the set of solutions to GV I is K.
First of all, we have to describe G. Indeed, we are going to show that G : R+ × R ⇒ R2,

G (x1, x2) =

 {(0,−1)} if x1 > 0,

conv
(
−R2

+ ∩ S (0, 1)
)

if x1 = 0.

That simple result from a geometrical viewpoint does require some work.
First of all, observe that for any x ∈ X, y ∈ P (x) ⇔ y1 ≥ 0 and y2 ≥ x2. Since arg maxx∈R+×R u (x1, x2) = ∅, we do
have G (x) =conv(N> (x) ∩ S (0, 1)) and we have to compute

N> (x) := {h ∈ Rn : ∀y ∈ U> (x) , 〈h, y − x〉 ≤ 0} =

=
{

(h1, h2) ∈ R2 : ∀y1 ≥ 0,∀y2 > x2, (h1, h2) (y1 − x1, y2 − x2) ≤ 0
}
.

(71)

Claim.

N> (x) =

 {0} × (−R+) if x1 > 0,

−R2
+ if x1 = 0.

Proof of the Claim.
Case A. x1 > 0.

Consider the main inequality in the definition of N> (x):

h1 · (y1 − x1) + h2 ·
(>0)

(y2 − x2) ≤ 0. (72)

Subclaim. h1 = 0.
Proof of the Subclaim. Suppose otherwise. Consistently with the description of N> (x) presented in (71), the idea of
what follows is to find (y1, y2) ∈ R2 such that y1 ≥ 0 and y2 > x2 which violates inequality (72).
Case 1. h1 > 0 and h2 ≥ 0.

(>0)

h1 ·
(R0)

(y1 − x1) +
(≥0)
h2 ·

(>0)

(y2 − x2) ≤ 0.

If y1 > x1, then (72) is violated.
Case 2. h1 > 0 and h2 ≤ 0.

(>0)

h1 ·
(R0)

(y1 − x1) +
(≤0)
h 2 ·

(>0)

(y2 − x2) ≤ 0.

If y1 > x1 and sufficiently large, then (72) is violated.
Case 3. h1 < 0 and h2 ≥ 0.

(<0)

h1 ·
(R0)

(y1 − x1) +
(≥0)
h2 ·

(>0)

(y2 − x2) ≤ 0.

If 0 ≤ y1 < x1, then (72) is violated.
Case 4. h1 < 0 and h2 ≤ 0.

(<0)

h1 ·
(R0)

(y1 − x1) +
(≤0)
h 2 ·

(>0)

(y2 − x2) ≤ 0.
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Take y1 = x1 − 1
m and y2 = x2 + 1

n with n,m ∈ N. Observe that since x1 > 0, by assumption of the case, there exists
m0 ∈ N such that for any m ∈ N and m > m0, y1 = x1 − 1

m > 0. Then we want to show the following statement is false

∃h1 < 0, h2 ≤ 0 such that ∀n ∈ N and ∀m ∈ N and m > m0, we have
(<0)

h1 ·
(
− 1

m

)
+

(≤0)
h2 ·

1

n
≤ 0,

i.e.,

∀h1 < 0,∀h2 ≤ 0, ∃n,m ∈ N with m > m0 such that
(<0)

h1 ·
(
− 1

m

)
+

(≤0)
h2 ·

1

n
> 0,

i.e.,

∀h1 < 0,∀h2 ≤ 0, ∃n,m ∈ N and m > m0 such that

(≤0)
h2
(<0)

h1

<
n

m
,

which is true for n sufficiently large.
End of the proof of the Subclaim.
We are now left with showing that h2 ≤ 0. From the above Subclaim, we have that (72) becomes

h2 ·
(>0)

(y2 − x2) ≤ 0,

which is certainly true for h2 ≤ 0, as desired.
Case B. x1 = 0.

We want to show that

N> (x) :=
{

(h1, h2) ∈ R2 : ∀y1 ≥ 0,∀y2 > x2, hy1 + h2 (y2 − x2) ≤ 0
}

= −R2
+.

[⊇]
Indeed,

(≤0)
h1 ·

(≥0)
y1 +

(≤0)
h2 ·

(>0)

(y2 − x2) ≤ 0

is certainly verified.
[⊆]
Suppose otherwise, i.e., either h1 > 0 or h2 > 0.
If h1 > 0, then

(>0)

h1 ·
(≥0)
y1 +

(R0)
h2 ·

(>0)

(y2 − x2) ≤ 0

which is violated for large enough y1.

If h2 > 0, then

(R0)
h1 ·

(≥0)
y1 +

(>0)

h2 ·
(>0)

(y2 − x2) ≤ 0

which is violated for y1 = 0.
End of the proof of the Claim.
Summarizing, we have that G : R+ × R→→ R2,

G (x1, x2) = conv
(
N> (x) ∩ S (0, 1)

)
=

 {(0,−1)} if x1 6= 0,

conv
(
−R2

+ ∩ S (0, 1)
)

if x1 = 0.

We can now rewrite problem GV I as follows.

Find (x1, x2) ∈ {0} × R such that ∃ (h1, h2) ∈ G (x1, x2) such that

∀ (x1, x2) ∈ {0} × R, 〈(h1, h2) , (x1, x2)− (x1, x2)〉 ≥ 0,

i.e.,
Find x2 ∈ R such that ∃ (h1, h2) ∈ G (0, x2) = conv

(
−R2

+ ∩ S (0, 1)
)

such that

∀x2 ∈ R, 〈(h1, h2) , (0, x2)− (0, x2)〉 = h2 (x2 − x2) ≥ 0,
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i.e.,
Find x2 ∈ R such that ∃ (h1, h2) ∈ conv

(
−R2

+ ∩ S (0, 1)
)

such that ∀x2 ∈ R, h2 (x2 − x2) ≥ 0.

To have ∀x2 ∈ R, h2 (x2 − x2) ≥ 0, it has to be h2 = 0 and then since (h1, h2) ∈conv
(
−R2

+ ∩ S (0, 1)
)
, it must be

h1 = −1. Then, the set of solutions to (GVI) above is {0} × R, as desired.*
iii.
Recall that K = {0} × R.
Assumption (i.2) is violated.
Indeed,

K⊥ = R×{0} ,

i.e., K⊥ is the horizontal axis, as verified below.
We want to show that

K⊥ :=
{
z ∈ RC : ∀x, y ∈ K, 〈z, x− y〉 = 0

}
= R×{0} .

First proof.
[⊇]. We want to show that for any ζ ∈ R, (ζ, 0) ∈ K⊥, i.e., we have for any (0, ξ) , (0, θ) ∈ K, we have 〈(ζ, 0) , (0, ξ)− (0, θ)〉 =
0, which is obvious.
[⊆]. We want to show that if (z1, z2) ∈ K⊥, then z2 = 0. Indeed,

(z1, z2) ∈ K⊥ ⇒ ∀ξ, θ ∈ R, (z1, z2) (0, ξ − θ) = 0.

Chosen ξ = 1 and θ = 0, we have 0 = (z1, z2) (0, 1) = z2, as desired.
Second proof.
Observe that K⊥ = {0} if and only if aff (K) = R2; but

aff (K) := aff ({0} × R) ⊆ span ({0} × R) = {0} × R

Assumption (i.2**) is violated.
It is clearly false that K ⊆ IntRC (X).
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