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Abstract

We consider a univariate semimartingale model for (the logarithm of) an asset price, containing jumps

having possibly infinite activity (IA). The nonparametric threshold estimator ˆIV n of the integrated variance

IV :=
∫

T

0
σ
2

sds proposed in [6] is constructed using observations on a discrete time grid, and precisely it sums

up the squared increments of the process when they are under a threshold, a deterministic function of the

observation step and possibly of the coefficients of X. All the threshold functions satisfying given conditions

allow asymptotically consistent estimates of IV , however the finite sample properties of ˆIV n can depend on

the specific choice of the threshold. We aim here at optimally selecting the threshold by minimizing either the

estimation mean square error (MSE) or the conditional mean square error (cMSE). The last criterion allows to

reach a threshold which is optimal not in mean but for the specific path at hand.

A parsimonious characterization of the optimum is established, which turns out to be asymptotically pro-

portional to the Lévy’s modulus of continuity of the underlying Brownian motion. Moreover, minimizing the

cMSE enables us to propose a novel implementation scheme for the optimal threshold sequence. Monte Carlo

simulations illustrate the superior performance of the proposed method.

Keywords: Threshold estimator, integrated variance, Lévy jumps, mean square error, conditional mean square

error, modulus of continuity of the Brownian motion paths, numerical scheme

JEL classification codes: C6, C13

1 Introduction

We consider the model

dXt = σtdWt + dJt, (1)

where W is a standard Brownian motion, σ is a cadlag process, and J is a pure jump semimartingale (SM) process.

Assume we have at our disposal a record {x0, Xt1 , .., Xtn} of discrete observations of X spanned on the fixed time

interval [0, T ], define ∆iZ or ∆n
i Z the increment Zti −Zti−1 for any process Z, and define threshold function r(σ, h)

any deterministic non-negative function of the observation step h, and possibly of the coefficients of X, such that

for any value σ ∈ R

lim
h→0

r(σ, h) = 0, lim
h→0

r(σ, h)

h log 1
h

= +∞.

We know that then the Threshold Realized Variance (or Truncated Realized Variance)

ˆIVn :=
n

∑

i=1

(∆iX)2I{(∆iX)2≤r(σti−1
,hi)}, (2)

∗Department of Mathematics, Washington University in St. Louis, MO, 63130, USA (figueroa@math.wustl.edu)
†Department of Management and Economics, University of Florence, via delle Pandette 9, 50127 (cecilia.mancini@unifi.it)
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where hi := ti − ti−1, gives a consistent estimator of the Integrated Variance

IV :=

∫ T

0

σ2
sds,

as supi hi → 0, as soon as σ is a.s. bounded away from zero on [0, T ]. In the case where the jump process J has

finite activity (FA) and the observations are evenly spaced, the estimator is also asymptotically Gaussian. However

the finite sample properties of ˆIVn can depend on the specific choice of the threshold (TH). The estimation error

is large when either the threshold is too small or when it is too large. In the first case too many increments are

discarded, included the increments bearing only small and negligible jumps, and TRV underestimates IV. In the

second case too many increments are kept within TRV, included many increments containing jumps, leading to an

overestimation of IV.

In this paper we look for an optimal threshold, by considering the following two optimality criteria: minimization

of MSE, the expected quadratic error in the estimation of IV; and minimization of cMSE, the expected quadratic

error conditional to the realized paths of the jump process J and of the volatility process (σs)s≥0. Assuming evenly

spaced observations, the two quantities MSE and cMSE are explicit functions of the TH and under each criterion

it turns out that for any semimartingale X, for which the volatility and the jump processes are independent on the

underlying Brownian motion, an optimal TH exists, and is a solution of an explicitly given equation, the equation

being different under the two criteria. Further, under each criterion the optimal TH is unique, at least for given

classes of processes X.

The characterizing equation depends on the observation step h and so does its solution. The optimal TH has to

tend to 0 as h tends to zero and, under each criterion, an asymptotic expansion with respect to h is possible for

some terms within the equation, which in turn implies an asymptotic expansion of the optimal TH. Under the

MSE criterion, when X is Lévy and J has either finite activity jumps or the activity is infinite but J is symmetric

strictly stable, the leading term of the expansion is explicit in h, and in both cases is proportional to the modulus

of continuity of the Brownian motion paths and to the spot volatility of X, the proportionality constant being√
2− Y , where Y is the jump activity index of X Thus the higher the jump activity is, the lower the optimal

threshold has to be to discard the higher noise represented by the jumps, in order to catch information about IV.

The leading term of the optimal TH does not satisfy the classical assumptions under which the truncation

method has been shown in [6] to consistently estimate IV, however at least in the finite activity jumps case it turns

out that the threshold estimator of IV constructed with the optimal TH is still consistent.

The assumptions needed for the cMSE criterion are a little bit less restrictive, and we find that, for constant

σ and FA jumps, the leading term of the optimal TH still has to be proportional to the modulus of continuity of

the Brownian motion paths and to σ. One of the main motivations for considering the cMSE arises from a novel

application of this to tuneup the threshold parameter. The idea consists in iteratively updating the optimal TH

and estimates of the increments of the continuous and jump components Xc
t =

∫ t

0
σsdWs and {Jt}t≥0, respectively.

We illustrate this method on simulated data. Minimization of the conditional mean square estimation error in the

presence of infinite activity jumps in X is object of further research.

An outline of the paper is as follows. Section 2 deals with the MSE: the existence of an optimal threshold

ε⋆(h) is established for a quite general SM X; for a Lévy process X, uniqueness is also established (Subsection

2.1) and the asymptotic expansion for the optimal TH is found in Section 2.3, in both the cases of a finite jump

activity Lévy X and of an infinite activity symmetric strictly stable X. In Section 3, for any finite jump activity

SM X, consistency of ˆIVn is verified even when the threshold function consists of the leading term of the optimal

threshold, which does not satisfy the classical hypothesis. Section 4 deals with the cMSE in the case where X is a

SM with constant volatility and FA jumps: existence of an optimal TH ε̄(h) is established, its asymptotic expansion

is found, then uniqueness is obtained. In Section 5 the results of Section 4 are used to construct a new method for

iteratively determine the optimal threshold value in finite samples, and a reliability check is executed on simulated
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data. Section 6 concludes and Section 7 contains the proofs not given in the main text.
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2 MEAN SQUARE ERROR: general results

We compute and optimize the mean square error (MSE) of ˆIVn passing through the conditional expectation with

respect to the paths of σ and J :

MSE := E[( ˆIVn − IV )2] = E
[

E[( ˆIVn − IV )2|σ, J ]
]

.

Conditioning on σ, as well as assuming no drift in X, is standard in papers where MSE-optimality is looked for, in

the absence of jumps (see e.g. [1]). We assume evenly spaced observation over a fixed time horizon [0, T ], so that

ti = ti,n = ihn, for any i = 1 . . . n, with h = hn = T/n. Denote by ε the square root of a given threshold function:

ε :=
√

r(σ, h). ˆIVn and MSE are in fact functions of ε (other than of h), and we indicate them by ˆIVn(ε), MSE(ε).

Note that for ε = 0 we have ˆIVn = 0, so MSE(ε) = E[IV 2]; as ε increases some squared increments (∆iX)2 are

included within ˆIVn, so ˆIVn becomes closer to IV and MSE(ε) decreases. However, if J 6≡ 0, for ε → +∞ the

quantity MSE(ε) increases again, since ˆIVn includes all the squared increments (∆iX)2 and thus ˆIVn estimates

the global quadratic variation IV +
∑

s≤T ∆X2
s of X at time T , and MSE(ε) becomes close to E[(

∑

s≤T ∆X2
s )

2].

We look for a threshold ε⋆ giving

MSE(ε⋆) = min
ε∈[0,∞[

MSE(ε).

In this section we analyze the first derivative MSE′(ε) and we find that an optimal threshold exists, in the general

framework where X is a semimartingale satisfying A1 below, and we furnish an equation to which ε⋆ is a solution,

while in Section 2.1, we find that ε⋆ is even unique. The equation has no explicit solution, but ε⋆ is a function of

h and we can explicitly characterize the first order term of its asymptotic expansion in h. Clearly we can always

find an approximation of the optimal threshold with arbitrary precision making use of numerical methods.

Let us denote

∆iX⋆ := ∆iXI{(∆iX)2≤ε2}, σ2
i :=

∫ ti

ti−1

σ2
sds, mi := ∆iJ.

To guarantee that W remains a Brownian motion conditionally to σ and J , we need to assume the following

A1. A.s. σ2
s > 0 for all s, and σ, J are independent on W .

Theorem 1. Under A1 and the finiteness of the expectation of the terms below, for fixed h and ε > 0, we have

MSE′(ε) = ε2G(ε), where

G(ε) :=
∑

i

E
[

ai(ε)
(

ε2 + 2
∑

j 6=i

bj(ε)− 2IV
)]

, ai(ε) :=
e
− (ε−mi)

2

2σ2
i + e

− (ε+mi)
2

2σ2
i

σi

√
2π

,

bi(ε) := E[(∆iX⋆)
2|σ, J ] = −

(

e
− (ε−mi)

2

2σ2
i (ε+mi) + e

− (ε+mi)
2

2σ2
i (ε−mi)

) σi√
2π

+
m2

i + σ2
i√

2π

∫

mi+ε

σi

mi−ε

σi

e−
x2

2 dx.

It clearly follows that MSE′(ε) > 0 if and only if G(ε) > 0 and, thus, to our aim of finding an optimal threshold,

it suffices to study the sign of G(ε) as ε varies.
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Notation. For brevity we sometimes omit to precise the dependence on ε of ai(ε) and bi(ε).

For a function f(ε) we sometimes use f(+∞) for limε→+∞ f(ε).

For two functions f(x), g(x) of a non-negative variable x which tends to 0 (respectively to +∞), by f ≪ g, or g ≫ f

we mean that f = o(g) as x → 0 (respectively x → +∞), by f ≍ g we mean that both f = O(g) and g = O(f) as

x → 0 (respectively x → +∞), while by f ∼ g we mean that f and g are asymptotically equivalent (i.e. f/g → 1).

We denote φ(x) = e−
x2

2√
2π

, Φ̄(x) =
∫ +∞
x

φ(s)ds.

h.o.t means higher order terms

Proof of Theorem 1. Under A1 we have that conditionally to (σ, J) the increment ∆iX =
∫ ti
ti−1

σsdWs +∆iJ is a

Gaussian r.v. with law N (mi, σ
2
i ), which allows to compute the conditional expectation E[ ˆIVn|σ, J ]. We have

E[ ˆIVn|σ, J ] =
n

∑

i=1

bi(ε) =
n

∑

i=1

−
(

e
− (ε−mi)

2

2σ2
i (ε+mi) + e

− (ε+mi)
2

2σ2
i (ε−mi)

) σi√
2π

+
m2

i + σ2
i√

π

(

∫

ε−mi√
2σi

0

e−t2dt+

∫

ε+mi√
2σi

0

e−t2dt
)

,

and

E[( ˆIVn(ε))
2|σ, J ] =

∑

i

E[(∆iX⋆)
4|σ, J ] + 2

∑

i

∑

j>i

E[(∆iX⋆)
2(∆jX⋆)

2|σ, J ]

=
∑

i

[

− e
− (ε−mi)

2

2σ2
i σi

(

ε3 +miε
2 +m2

i ε+m3
i + 5miσ

2
i + 3σ2

i ε
)

−e
− (ε+mi)

2

2σ2
i σi

(

ε3 −miε
2 +m2

i ε−m3
i − 5miσ

2
i + 3σ2

i ε
)

+
(

∫

ε−mi√
2σi

0

e−t2dt+

∫

ε+mi√
2σi

0

e−t2dt
)√

2
(

m4
i + 6m2

iσ
2
i + 3σ4

i

)] 1√
2π

+ 2
∑

i

∑

j>i

bibj , (3)

having used that conditionally to σ and J , ∆iX⋆ and ∆jX⋆ are independent. It follows that

MSE(ε) = E

[

∑

i

[

− e
− (ε−mi)

2

2σ2
i σi

(

ε3 +miε
2 +m2

i ε+m3
i + 5miσ

2
i + 3σ2

i ε
)

−e
− (ε+mi)

2

2σ2
i σi

(

ε3 −miε
2 +m2

i ε−m3
i − 5miσ

2
i + 3σ2

i ε
)

+
(

∫

ε−mi√
2σi

0

e−t2dt+

∫

ε+mi√
2σi

0

e−t2dt
)√

2
(

m4
i + 6m2

iσ
2
i + 3σ4

i

)] 1√
2π

+2
∑

i

∑

j>i

bi(ε)bj(ε)− 2IV

n
∑

i=1

[

−
(

e
− (ε−mi)

2

2σ2
i (ε+mi) + e

− (ε+mi)
2

2σ2
i (ε−mi)

) σi√
2π

+
m2

i + σ2
i√

π

(

∫

ε−mi√
2σi

0

e−t2dt+

∫

ε+mi√
2σi

0

e−t2dt
)]

+ IV 2

]

.

MSE(ε) is a differentiable functions of ε, therefore to find the minimum on [0,+∞[ of MSE(ε) we can study

the sign of its first derivative MSE′(ε). Since MSE′(ε) = d
dεE[( ˆIVn(ε))

2]− 2IV d
dεE[ ˆIVn(ε)], we begin to compute

d
dεE[ ˆIVn(ε)|σ, J ]. Note that

d

dε
bi(ε) =

(

e
− (ε−mi)

2

2σ2
i + e

− (ε+mi)
2

2σ2
i

) (ε+mi)(ε−mi)

σi

√
2π

4



−
(

e
− (ε−mi)

2

2σ2
i + e

− (ε+mi)
2

2σ2
i

) σi√
2π

+
m2

i + σ2
i

σi

√
2π

(

e
− (ε−mi)

2

2σ2
i + e

− (ε+mi)
2

2σ2
i

)

= ε2
e
− (ε−mi)

2

2σ2
i + e

− (ε+mi)
2

2σ2
i

σi

√
2π

= ε2ai(ε),

so that
d

dε
E[ ˆIVn(ε)|σ, J ] = ε2

n
∑

i=1

ai(ε) (4)

is strictly greater than zero for all values of ε > 0. As for d
dεE[( ˆIVn(ε))

2|σ, J ], note that the term 2
∑

i

∑

j>i bibj in

(3) can be written as
∑

i

∑

j 6=i bibj , so its derivative coincides with
∑

i

∑

j 6=i(ε
2aibj + biε

2aj), however

∑

i

bi
∑

j 6=i

aj =
(

∑

i

bi
∑

j

aj −
∑

i

biai

)

=
(

∑

i

ai
∑

j

bj −
∑

i

aibi

)

=
∑

i

ai
∑

j 6=i

bj

so that
∑

i

∑

j 6=i(ε
2aibj + biε

2aj) = 2
∑n

i=1

∑

j 6=i ε
2aibj ,

d

dε
E[( ˆIVn(ε))

2|σ, J ] = ε4
∑

i

ai(ε) + 2
(

n
∑

i=1

∑

j>i

bi(ε)bj(ε)
)′

(5)

=
∑

i

[

ε4ai + 2ε2ai
∑

j 6=i

bj

]

and
d

dε
MSE(ε) = ε2

∑

i

E
[

ε2ai + 2ai
∑

j 6=i

bj − 2IV ai

]

.

= ε2
∑

i E
[

ai

(

ε2 + 2
∑

j 6=i bj − 2IV
)]

= ε2G(ε).

(6)

Remark 1. If also J 6≡ 0, we have

MSE(0) = E[IV 2] > 0 and, for small h, lim
ε→+∞

MSE(ε) > 0.

Corollary 1. Under the same assumptions of Theorem 1, even in the absence of jumps, an optimal threshold exists

and is solution of G(ε) = 0.

Proof. Note that ai(ε) and bi(ε) are continuously differentiable functions of ε, and, with fixed h = T
n ,

ai(0) =
2e

− m2
i

2σ2
i

σi

√
2π

, bi(0) = 0,

ai(+∞) = 0, bi(+∞) = E[(∆iX⋆)
2|σ, J ] = m2

i + σ2
i ,

a′i(ε) = − 1

σ3
i

√
2π

[

e
− (ε−mi)

2

2σ2
i (ε−mi) + e

− (ε+mi)
2

2σ2
i (ε+mi)

]

, b′i(ε) = ε2ai(ε),

so we find that G(0) = − 4
σi

√
2π

∑

i E
[

e
− m2

i
2σ2

i · IV
]

< 0, and limε→+∞ G(ε) = 0+, so there exists ε+ > 0 :

MSE′(ε) > 0 on [ε+,+∞). On the compact set [0, ε+] the continuous function MSE has necessarily absolute

minimum value MSE, and since on [ε+,+∞) MSE is increasing we have that on [0,+∞) the absolute minimum

is MSE.

MSE′(ε) is continuous and assumes both negative and positive values, thus equation G(ε) = 0 has a solution. Any

minimum point of MSE on [0,+∞) has to be a stationary point, so it has to solve the equation.
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Remark 2. In principle MSE(ε) could even have many points ε where the absolute minimum value MSE of MSE

on [0,+∞) is reached; MSE could even have an infinite number of local not absolute minima.

To determine the number of solutions to G(ε) = 0, we need to study the sign of G′(ε) (corresponding to the

convexity properties of MSE(ε)), but this is not easy. Define

gi(ε) := ε2 + 2
∑

j 6=i

bj − 2IV,

so that

G(ε) =
∑

i

E[ai(ε)gi(ε)].

We can easily study the functions gi, since we know that gi(0) = −2IV < 0, limε→+∞ gi(ε) = +∞ and g′i(ε) =

2ε(1 + ε
∑

j 6=i ai) > 0 for all ε > 0. However within the joint function G(ε) the presence of the terms ai(ε) makes

it difficult even to know whether (aigi)
′ is positive.

2.1 When X is Lévy

Let us assume

A2. X is Lévy.

We now have that σ > 0 is constant and ∆iX⋆ are i.i.d., so the equation characterizing MSE′(ε) = 0 is much

simpler: from (6), since within ai
∑

j 6=i bj the term mi of ai is independent on the terms mj of bj , we have

MSE′(ε) = ε2G(ε) = ε2nE[a1(ε)]
(

ε2 + 2(n− 1)E[b1(ε)]− 2IV
)

.

Theorem 2. If X is Lévy, equation

ε2 + 2(n− 1)E[b1(ε)]− 2IV = 0 (7)

has a unique solution ε⋆ and, thus, there exists a unique optimal threshold, which is ε⋆.

Proof. For ε > 0 we have MSE′(ε) > 0 if and only if G(ε) > 0, which in turn is true if and only if

g(ε) := ε2 + 2(n− 1)E[b1]− 2IV > 0

where, setting m := m1 = ∆1J , we recall that we have

E[b1] = E
[

−
(

e−
(ε−m)2

2σ2h (ε+m) + e−
(ε+m)2

2σ2h (ε−m)
)σ

√
h√

2π

+
m2 + σ2h√

π

(

∫
ε−m√
2σ

√
h

0

e−t2dt+

∫
ε+m√
2σ

√
h

0

e−t2dt
)]

.

The sign of g(ε) is studied as follows:

g(0) = −2σ2T < 0,

lim
ε→+∞

g(ε) = +∞,

g′(ε) = 2ε(1 + (n− 1)εE[a1])

so that g′(ε) > 0 for all ε > 0, n > 1. That implies that g(ε) starts at ε = 0 from a negative value and strictly

increases towards +∞, as ε increases, so that there exists a unique ε⋆ such that g(ε) < 0 for ε ∈ [0, ε⋆[, g(ε⋆) = 0

and g(ε) > 0 for ε ∈]ε⋆,+∞[. That implies in turn that MSE(ε) has a unique minimum point in ε⋆, which

is then the optimal threshold we were looking for: ε⋆ is the unique solution of equation (7), corresponding to

g(ε) = G(ε) = 0.

The equation in (7) has no explicit solution, however we can give some important indications to approximate ε⋆.
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2.2 Asymptotic behavior of E (bi(ε))

For the rest of Section 2 we assume that ε := ε(h) = εh, even when for brevity we omit to indicate the dependence

on h. We still are under A2, so recall that

E [bi(ε)] = E

[

|σ∆n
i W +∆n

i J |2 1{|σ∆n
i W+∆n

i J|≤ε}

]

,

is constant in i. Note that E[bi(ε)] is finite for any Lévy process J , regardless of whether J has bounded first

moment or not. We consider two cases: the case where J is a finite jump activity process and the one where this

is a symmetric strictly stable process. The asymptotic characterization of E [bi(ε)] will be used in Subsection 2.3

to deduce the asymptotic behavior of the optimal threshold ε⋆.

We anticipate that in Subsection 2.3 we will also see that an optimal threshold ε⋆ has to tend to 0 as h → 0

and in such a way that ε⋆√
h
→ +∞.

2.2.1 Finite Jump Activity Lévy process

Theorem 3. Let X be a finite jump activity Lévy process with jump size density f and with jump intensity

λ. Suppose also that the restrictions of f on (0,∞) and (−∞, 0) admit C1 extensions on [0,∞) and (−∞, 0],

respectively. Then, for any ε = ε(h) such that ε → 0 and ε ≫
√
h, as h → 0, we have

E [b1(ε)] = σ2h− 2√
2π

σε
√
he−

ε2

2σ2h + λh
ε3

3
C(f) +O

(

h2
)

+ o
(

ε
√
he−

ε2

2σ2h

)

+ o
(

hε3
)

,

where above C(f) := f(0+) + f(0−).

Proof. By definition,

E [b1(ε)] = E
[

(∆n
1X)21{|∆n

1 X|<ε,∆n
1 N=0}

]

+ E
[

(∆n
1X)21{|∆n

1 X|<ε,∆n
1 N 6=0}

]

=: G + L. (8)

By Lemma S.2 and Lemma S.5 with k = 2 in [3], provided that ε → 0, we have

L := E
[

(∆n
1X)21{|∆n

1 X|<ε,∆n
1 N 6=0}

]

∼ λh
ε3

3
C(f), (h → 0), (9)

G := σ2h− 2√
2π

σε
√
he−

ε2

2σ2h +O
(

h2
)

+ o
(

ε
√
he−

ε2

2σ2h

)

,

which shows the result.

2.2.2 Strictly stable symmetric Lévy process

Let us start by noting that

E[b1 (ε)] = E

[

(σWh + Jh)
2
1{|σWh+Jh|≤ε}

]

= σ2
E
[

W 2
h1{|σWh+Jh|≤ε}

]

+ 2σE
[

WhJh1{|σWh+Jh|≤ε}
]

+ E
[

J2
h1{|σWh+Jh|≤ε}

]

=: Ch(ε) +Dh(ε) + Eh(ε).

The first term above can be written as

Ch(ε) = σ2h− σ2
E
[

W 2
h1{|σWh+Jh|>ε}

]

= σ2h− σ2h
(

C+
h (ε) + C−

h (ε)
)

,

where

C+
h (ε) = E

[

W 2
1 1{W1+σ−1h−1/2Jh>σ−1h−1/2ε}

]

, C−
h (ε) = E

[

W 2
1 1{W1+σ−1h−1/2Jh<−σ−1h−1/2ε}

]

.

7



By conditioning on J and using the fact that E[W 2
1 1{W1>x}] = xφ(x) + Φ̄(x), for all x ∈ R, we have

C±
h (ε) = E

[(

ε

σ
√
h
∓ Jh

σ
√
h

)

φ

(

ε

σ
√
h
∓ Jh

σ
√
h

)

+ Φ̄

(

ε

σ
√
h
∓ Jh

σ
√
h

)]

.

In what follows, we determine the behavior of the above quantities under the assumption that ε ≫
√
h. The proofs

of the following Lemma 1 and Lemma 2 are in an Appendix.

Lemma 1. Suppose that {Jt}t≥0 is a symmetric Y -stable process with Y ∈ (0, 2). Then, there exist constants K1

and K2 such that:

E

[

φ

(

ε

σ
√
h
− Jh

σ
√
h

)]

=
1√
2π

e−
ε2

2σ2h −K1ε
−1−Y h

3
2 + h.o.t. (10)

E

[

Jhφ

(

ε√
h
− Jh√

h

)]

= K2hε
1−Y + h.o.t.. (11)

Lemma 2. Suppose that {Jt}t≥0 is a symmetric strictly stable process with Lévy measure C|x|−Y−1dx. Then,

the following asymptotics hold:

E

[

Φ̄

(

ε

σ
√
h
− Jh

σ
√
h

)]

=
C

Y
hε−Y +O

(

ε−2Y h2
)

+O

(

E

[

φ

(

ε

σ
√
h
− Jh

σ
√
h

)])

, (12)

E
[

J2
h1{|σWh+Jh|≤ε}

]

=
2C

2− Y
hε2−Y +O

(

h2ε2−2Y
)

+O
(

h
4−Y

2

)

+O
(

h
2
Y

)

. (13)

We are ready to show our main result in this part:

Theorem 4. Let Xt = σWt + Jt, where W is a Wiener process and J is a symmetric strictly stable Lévy process

with Lévy measure C|x|−Y−1. Then, for any ε = ε(h) such that ε → 0 and ε ≫
√
h, as h → 0, we have

E [b1(ε)] = σ2h− 2σ√
2π

√
hεe−

ε2

2σ2h +
2C

2− Y
hε2−Y + h.o.t..

Proof. From Lemmas 1 and 2,

C+
h (ε) = E

[(

ε

σ
√
h
− Jh

σ
√
h

)

φ

(

ε

σ
√
h
− Jh

σ
√
h

)

+ Φ̄

(

ε

σ
√
h
− Jh

σ
√
h

)]

=
ε

σ
√
h

(

1√
2π

e−
ε2

2σ2h −K1ε
−1−Y h

3
2

)

− 1

σ
√
h

(

K2hε
1−Y

)

+
C

Y
hε−Y + h.o.t.

=
ε

σ
√
h
√
2π

e−
ε2

2σ2h − K2

σ
h1/2ε1−Y + h.o.t.,

where above we used that ε−Y h ≪ h1/2ε1−Y . Therefore, using that Dh = 0 and Lemma 2, with K3 = 2C
2−Y ,

E[b1 (ε)] = E

[

(σWh + Jh)
2
1{|σWh+Jh|≤ε}

]

= Ch(ε) +Dh(ε) + Eh(ε)

= σ2h− 2σ2h

(

ε

σ
√
h
√
2π

e−
ε2

2σ2h − K2

σ
h1/2ε1−Y

)

+K3hε
2−Y + h.o.t.

= σ2h− 2σ√
2π

√
hεe−

ε2

2σ2h +K3hε
2−Y + h.o.t.,

where above we used that hε2−Y ≫ h3/2ε1−Y .

2.3 Asymptotic behavior of ε⋆

We now assume

A3. J 6≡ 0 and the support of any ∆Jt is R.

We firstly see that an optimal threshold ε⋆ = ε⋆(h) has to tend to 0 as h → 0 and in such a way that ε⋆√
h
→ +∞.

Then we will show the asymptotic behavior of ε⋆ in more detail.
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Remark 3. Note that under A3, if ε⋆(h) minimizes MSE, then necessarily ε⋆(h) → 0 as h → 0. Indeed, if

lim inf ε⋆(h) = c > 0, then on a sequence ε⋆(h) converging to c we would have ˆIV n − IV → ∑

s≤T ∆J2
s I|∆Js|≤c in

probability, rather than ˆIV n − IV → 0; since P{∑s≤T ∆J2
s I|∆Js|≤c > 0} > 0, the MSE could not be minimized.

Lemma 3. Suppose Xt = σWt+Jt, where W is a Brownian motion and J is a pure-jump Lévy process of bounded

variation or, more generally, such that, for some Y ∈ (0, 2), h
−1/Y
n Jhn

P→ J , for a real-valued random variable J .

Then, ε⋆n/
√
hn → ∞, as n → ∞.

Remark. If J has FA jumps and drift η, Jt = ηt +
∑Nt

k=1 γk, then we have h−1Jh
P→ η and, thus, the above

assumption is satisfied with Y = 1.

Proof. We show the result by contradiction. Suppose that lim infn→∞
ε⋆n√
hn

< ∞. For simplicity and without loss of

generality, we further assume that limn→∞
ε⋆n√
hn

=: L < ∞ as all the statements below are valid on a subsequence

{nk}k≥0. Let M ∈ (0,∞) be such that supn
ε⋆n√
hn

≤ M . Also, for simplicity, let us write εn for ε⋆n and assume that

T = 1 so that hn = 1/n. Consider the decomposition

E[b1 (ε)] = E

[

(σWh + Jh)
2
1{|σWh+Jh|≤ε}

]

= σ2
E
[

W 2
h1{|σWh+Jh|≤ε}

]

+ 2σE
[

WhJh1{|σWh+Jh|≤ε}
]

+ E
[

J2
h1{|σWh+Jh|≤ε}

]

=: ch(ε) + dh(ε) + eh(ε).

Note that dominated convergence implies that

1

hn
chn

(εn) = σ2
E

[

W 2
1 1{|σW1+h

−1/2
n Jhn |≤h

−1/2
n εn}

]

n→∞−→ σ2
E
[

W 2
1 1{|W1|≤L/σ}

]

< σ2,

since h
−1/2
n Jhn = h

1
Y − 1

2
n (h

−1/Y
n Jhn) → 0, in probability. For dh note that

σ|W1h
−1/2
n Jhn |1{|σW1+h

−1/2
n Jhn |≤h

−1/2
n εn} ≤ σ2|W1|2 + σ|W1|h−1/2

n εn ≤ σ2|W1|2 + σ|W1|M,

therefore, again by dominated convergence

h−1
n dhn

(εn) = 2σE
[

W1h
−1/2
n Jhn

1{|σW1+h
−1/2
n Jhn |≤h

−1/2
n εn}

]

n→∞−→ 0.

Similarly, since (h
−1/2
n Jhn

)21{|σW1+h
−1/2
n Jhn |≤h

−1/2
n εn} ≤ 2σ2W 2

1 + 2h−1
n ε2n ≤ 2W 2

1 + 2M2,

h−1
n ehn

(εn) = E

[

(

h−1/2
n Jhn

)2

1{|σW1+h
−1/2
n Jhn |≤h

−1/2
n εn}

]

n→∞−→ 0.

Finally, let us write the equation ε2n + 2(n− 1)E[b1(εn)]− 2nhnσ
2 = 0 as

ε2n + 2
n− 1

n

(

dhn
(εn)

hn
+

ehn
(εn)

hn

)

= 2σ2 − 2
n− 1

n

chn
(εn)

hn
. (14)

The right-hand side of the equation converges to 2σ2
(

1− E
[

W 2
1 1{|W1|≤L/σ}

])

> 0, while the left hand side con-

verges to 0 and this leads to a contradiction and therefore limn→∞
ε⋆n√
hn

= ∞.

We are now ready to show more precisely the asymptotic behavior of ε⋆. The following result covers the FA

case.

Proposition 1. Let J have FA jumps and let ε⋆ = ε⋆(h) be the optimal threshold. Then,

ε⋆ ∼
√

2σ2h ln
1

h
, as h → 0.
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Proof. For simplicity, in what follows we take T = 1 so that h = 1/n. Again, recall that ε⋆ is the solution of

(ε⋆)2 + 2(n− 1)E[b1(ε
⋆)]− 2nhσ2 = 0.

Throughout, we shall use that ε⋆ ≫
√
h, as proved in the above lemma. For simplicity, we write ε instead of ε⋆.

By the asymptotic behavior of E [b1(ε)] described above,

ε2 + 2(n− 1)

(

σ2h− 2√
2π

σε
√
he−

ε2

2σ2h + λh
ε3

3
C(f) +O

(

h2
)

+ o
(

ε
√
he−

ε2

2σ2h

)

+ o
(

hε3
)

)

− 2nhσ2 = 0,

and, thus, using that h = 1/n,

ε2 − 2σ2h− 4√
2π

σ
ε√
h
e−

ε2

2σ2h + 2λ
ε3

3
C(f) +O (h) + o

(

ε√
h
e−

ε2

2σ2h

)

+ o
(

ε3
)

= 0. (15)

Now, since h = o(ε2) (as assumed at the beginning), we can write the previous equation as

ε2 − 4√
2π

σ
ε√
h
e−

ε2

2σ2h + o

(

ε√
h
e−

ε2

2σ2h

)

+ o
(

ε2
)

= 0.

Dividing by ε and rearranging the terms,

ε (1 + o(1)) =
4√
2π

σ
1√
h
e−

ε2

2σ2h (1 + o(1)) . (16)

Then, taking logarithms of both sides and since ln(1 + o(1)) = o(1),

ln ε+ o(1) = − ε2

2σ2h
− 1

2
lnh+ ln

(

4σ√
2π

)

+ o(1). (17)

which can be written as

ln

(

ε2

σ2h

)

+ o(1) = − ε2

σ2h
− 2 lnh+ ln

(

8

π

)

+ o(1)

Defining ̟ = ε2/(σ2h), we can write

− ln̟

̟
+

2 ln 1
h

̟
− ln π

8

̟
− o(1)

̟
= 1 +

o(1)

̟
.

Therefore, making h → 0 and using that ̟ → ∞ (since ε ≫
√
h),

2 ln 1
h

̟

h→0−→ 1.

Recalling that ̟ = ε2/(σ2h), we conclude the result.

The following result specifies the asymptotic behavior of ε⋆ for symmetric strictly stable processes.

Proposition 2. Under the conditions of Theorem 4, the optimal threshold ε⋆ = ε⋆(h) is such that

ε⋆ ∼
√

(2− Y )σ2h ln
1

h
, as h → 0.

Proof. For simplicity, we again take T = 1 so that h = 1/n and write ε instead of ε⋆. By the asymptotic behavior

of E [b1(ε)] described in Theorem 4, we can write (ε⋆)2 + 2(n− 1)E[b1(ε
⋆)]− 2nhσ2 = 0 as

ε2 + 2(n− 1)

(

σ2h− 2σ√
2π

ε
√
he−

ε2

2σ2h +
2C

2− Y
hε2−Y + h.o.t.

)

− 2nhσ2 = 0,

and, thus, using that h = o(ε2) and ε2 = o
(

ε2−Y
)

, we have

4C

2− Y
ε2−Y − 4√

2π
σ

ε√
h
e−

ε2

2σ2h + o

(

ε√
h
e−

ε2

2σ2h

)

+ o
(

ε2−Y
)

= 0. (18)
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Dividing by ε and rearranging the terms,

ε1−Y (1 + o(1)) =
2− Y

C
√
2π

σ
1√
h
e−

ε2

2σ2h (1 + o(1)) .

Then, taking logarithms of both sides and since ln(1 + o(1)) = o(1),

(1− Y ) ln ε+ o(1) = − ε2

2σ2h
− 1

2
lnh+ ln

(

(2− Y )σ

C
√
2π

)

+ o(1),

which can be written as

1− Y

2
ln

(

ε2

σ2h

)

+
1− Y

2
ln

(

2σ2
)

+
1− Y

2
ln (h) + o(1) = − ε2

2σ2h
− 1

2
lnh+ ln

(

(2− Y )σ

C
√
2π

)

+ o(1).

Equivalently, writing ̟ = ε2/(σ2h) and dividing by −̟,

−(1− Y )
ln̟

̟
+

(2− Y ) ln 1
h

̟
− K

−̟
= 1 +

o(1)

̟
.

and using that ̟ → ∞ (since ε ≫
√
h), we get

(2− Y ) ln 1
h

̟

h→0−→ 1.

Recalling that ̟ = ε2/(σ2h), we conclude the result.

3 Threshold criterion when εh =
√

2Mh log 1
h

Under the framework described in [6], in the case of equally spaced observations, the threshold criterion allows

convergence of

ˆIVn :=
n

∑

i=1

(∆iX)2I{(∆iX)2≤r(σti−1
,h)}

to IVT =
∫ T

0
σ2
sds when, for all i = 1, . . . , n, we have r(σti−1 , h) = r(h) and r(h) is a deterministic function of h

s.t. r(h) → 0, r(h)

h log 1
h

→ ∞, as h → 0. Here we show that, under finite activity jumps, the same estimator is also

consistent in the case r(σ, h) = 2Mih log
1
h , where Mi are proper random numbers. Concretely, assume the following

A4. Let

dXt = atdt+ σtdWt + dJ t, (19)

where Jt =
∑Nt

i=1 γi for a non-explosive counting process N and real-valued random variables γj , a, σ

are càdlàg and a.s. σ2 := infs∈[0,T ] σ
2
s > 0.

Recall that a.s., the paths of a and of σ are bounded on [0, T ]. Define σ̄2 := sups∈[0,T ] σ
2
s , then, the following

Proposition and Corollary hold true.

Proposition 3. UnderA4, if we choose ri(h) = 2Mih log
1
h , with anyMi(ω) such thatMi(ω) ∈ [infs∈[ti−1,ti] σ

2
s(ω), σ̄],

we have:

a.s. ∀η > 0, for sufficiently small h: ∀ i = 1, . . . , n, I{(∆iX)2≤(1+η)ri(h)} = I{∆iN=0}.

Corollary 2. For all η > 0, we have
∑n

i=1 (∆iX)2I{(∆iX)2≤(1+η)ri(h)}
P→ IV, as h → 0.

Proof of Proposition 3. In order to prove the proposition, we follow and modify the proof of Theorem 1 in [6], in

that we show that a.s., for all η > 0, for sufficiently small h, we have

1) ∀i = 1, . . . , n, I{∆iN=0} ≤ I{(∆iX)2≤(1+η)ri(h)}
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2) ∀i = 1, . . . , n, I{∆iN=0} ≥ I{(∆iX)2≤(1+η)ri(h)}.

Then the thesis follows.

Call ∆iX0 =
∫ ti
ti−1

asds+
∫ ti
ti−1

σsdWs, ā = sups∈[0,T ] |as|, σ̄ = sups∈[0,T ] σs and γ(ω) = minℓ:∆Nℓ 6=0 |γℓ(ω)|, and
note that under our assumptions P (γ 6= 0) = 1. To show 1) a 2) we use the following key fact:

sup
i∈{1,...,n}

|∆iX0|
√

2Mih log
1
h

≤ sup
i

ā
√
h

√

2Mi log
1
h

+

sup
i

|BIVti
−BIVti−1

|
√

2∆iIV log 1
∆iIV

sup
i

√

2∆iIV log 1
∆iIV

√

2Mih log
1

Mih

sup
i∈{1,...,n}

√

2h log 1
Mih

√

2h log 1
h

,

where B is a standard Brownian motion and we used the fact that σ ·W is a time changed Brownian motion ([7],

theorems 1.9 and 1.10), meaning that we can represent ∆i (σ ·W ) = BIVti
− BIVti−1

. By the Paul Lévy law on

the modulus of continuity of the BM paths ([5], theorem 9.25) and the monotonicity of the function x ln(1/x) on

(0, 1/e), it follows that for sufficiently small h the first two factors of the last line of last display are bounded above

by 1, so that

sup
i

|∆iX0|
√

2Mih log
1
h

≤ sup
i

ā
√
h

√

2Mi log
1
h

+ sup
i

√

log 1
Mi

log 1
h

+ 1

≤ Mh :=
ā
√
h

√

2σ2 log 1
h

+

√

√

√

√

log 1
σ2

log 1
h

+ 1

which tends to 1, as h → 0.

Now, in order to show 1), we define {J} = {i ∈ {1, 2, ..., n} : ∆iN 6= 0}, and it is sufficient to prove that for h

small enough supi6∈{J}
|∆iX|√
ri(h)

≤ 1 + η. Indeed, supi 6∈{J}
|∆iX|√
ri(h)

= supi 6∈{J}
|∆iX0|√

ri(h)
≤ supi∈{1,..,n}

|∆iX0|√
ri(h)

≤ Mh → 1,

thus for all η > 0 for sufficiently small h, it is ensured that supi 6∈{J}
|∆iX|√
ri(h)

< 1 + η, that is: for all i, if ∆iN = 0

then necessarily we have |∆iX| < (1 + η)
√

ri(h), and 1) follows.

In order to show 2) we prove that, for sufficiently small h, infi∈{J}
|∆iX|√
ri(h)

> 1 + η. In fact firstly note that for

sufficiently small h all the increments of N are either 0 or 1. It follows that if ∆iN 6= 0, then ∆iN = 1, and ∆iJ

coincides with the size, say γℓi , of a single jump ∆iJ = γℓi . Then
|∆iX|√
ri(h)

≥ |γℓi
|√

ri(h)
− |∆iX0|√

ri(h)
and

inf
i∈{J}

|∆iX|
√

ri(h)
≥

γ

σ̄
√

2h log 1
h

− sup
i∈{J}

|∆iX0|
√

2Mih log
1
h

≥
γ

σ̄
√

2h log 1
h

− (1 + η)

and this tends to +∞ when h → 0, thus infi∈{J}
|∆iX|√
ri(h)

> 1 + η, meaning that if ∆iN 6= 0 then necessarily

|∆iX| >
√

ri(h)(1 + η), as we needed.

Proof of Corollary 2. The proof of the Corollary is straightforward, in that a.s. we fix any η > 0, and for

sufficiently small h we have

n
∑

i=1

(∆iX)2I{(∆iX)2≤(1+η)ri(h)} =

n
∑

i=1

(∆iX)2I{∆iN=0} =

n
∑

i=1

(∆iX0)
2 −

n
∑

i=1

(∆iX0)
2I{∆iN 6=0}

P→ IVT ,

since the last term tends to 0 in probability, as E[
∑n

i=1(∆iX0)
2I{∆iN 6=0}] ≤ NTO(h) → 0.

12



4 CONDITIONAL MEAN SQUARE ERROR: FA jumps case

We now put ourselves under A1. The quantity of our interest here, cMSE(ε)
.
= E[( ˆIV − IV )2|σ, J ], is such that

∀ω, cMSE(0) = IV 2 and as soon as J 6≡ 0 then cMSE(+∞) > 0, because ˆIV
ε→+∞→ QV. Further, from the proof

of Theorem 1, we have

cMSE′(ε) = ε2F (ε), with F (ε)
.
=

n
∑

i=1

aigi, gi = ε2 + 2
∑

j 6=i

bj − 2IV.

We analyze the sign of F (ε): for n, h fixed, σ2
i and mi also are fixed, and we have F (0) = −2IV

∑n
i=1 ai < 0, since

bj(0) = 0. Further we have F (+∞) = 0+: to see it, first note that, from the expression of bi(ε), bi(+∞) = m2
i +σ2

i ,

then gi(ε) ∼ ε2 + 2
∑

j 6=i m
2
j − 2σ2

i ∼ ε2, as ε → +∞. Moreover, each ai ∼ 2(2π)−1/2σ−1
i exp

(

− ε2

2σ2
i

)

, thus, for

sufficiently large ε, F =
∑n

i=1 aigi is a finite sum of n positive terms aigi ≤ K(2π)−1/2σ−1
i ε2 exp

(

− ε2

2σ2
i

)

for some

constant K and fixed σi, so F (ε) → 0+, as ε → +∞. Since F is continuous, it follows that, even in the absence of

jumps, an optimal threshold exists and solves F (ε) = 0.

We now assume also A3.

Remark 4. As in Remark 3, if ε̄ = ε̄(h) minimizes cMSE, then it has to be true that ε̄ → 0, as h → 0. In what

follows we again also find that necessarily ε̄(h)√
h

→ +∞.

A4’. We assume A4 with a ≡ 0, constant σ > 0 and nh = 1.

When considering h → 0, we assume to have a sufficiently small h so that a.s. the number of jumps occurring

during ]ti−1, ti] is at most 1; note that for any t we have miIt∈]ti−1,ti] → ∆Jt, so when considering a jump time t we

assume that h is sufficiently small so that the sign of any miIt∈]ti−1,ti] is the same as the one of ∆Jt, in particular

if ∆Jt 6= 0 then the increments mi approaching it are non-zero.

4.1 Asymptotic behavior of bi(ε) and F

Proposition 4. Under A1, A3, A4’, if ε̄ = ε̄(h) solves F (ε) = 0 and ε̄ = ε̄(h) → 0, then ε̄(h)√
h

→ +∞.

Proof. ε̄ is such that
∑n

i=1 aigi = 0, i.e.
∑n

i=1 ai(ε̄
2 + 2

∑

j 6=i bj − 2IV ) = 0. For simplicity let us rename ε̄ by ε. If

lim infh→0
ε(h)√

h
= L ∈ [0,+∞) we can find a subsequence (that we recall ε(h)) such that lim ε(h)√

h
= L. Note that

0 =
n

∑

i=1

ai

(

ε2

h
+

2
∑

j 6=i bj

h
− 2σ2n

)

=
ε2

h

n
∑

i=1

ai +
2

h

n
∑

i=1

ai
∑

j 6=i

bj − 2σ2n
n

∑

i=1

ai,

i.e.
ε2

h
= 2σ2n− 2

h

∑n
i=1 ai

∑

j 6=i bj
∑n

i=1 ai
= 2n

[

σ2 −
∑n

i=1 ai
∑

j 6=i bj
∑n

i=1 ai

]

. (20)

Now we show that σ2 −
∑n

i=1 ai

∑

j 6=i bj
∑n

i=1 ai
tends to a strictly positive constant, which in turn means that equality (20)

is impossible, since on any sequence ε(h) such that ε(h)√
h

→ L the left term tends to L2, while the right one tends

to +∞.

Let us then check that σ2 −
∑n

i=1 ai

∑

j 6=i bj
∑n

i=1 ai
tends to a strictly positive constant. Since J has FA, a.s. we only

have finitely many ∆Jt 6= 0, and, for small h, NT coincides with
∑n

i=1 Imi 6=0. Recalling the explicit expression of

bj (also reported below), we have

∑

j 6=i

bj =
∑

j 6=i,mj=0

bj +
∑

j 6=i,mj 6=0

bj ≤ −(n−NT )
σ
√
h√

2π
2εe−

ε2

2σ2h + (n−NT )
σ2h√
2π

∫ ε

σ
√

h

− ε

σ
√

h

e−
x2

2 dx
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−
∑

j 6=i,mj 6=0

σ
√
h√

2π

(

ε
(

e−
(ε−|mj |)2

2σ2h + e−
(ε+|mj |)2

2σ2h

)

+ |mj |
(

e−
(ε−|mj |)2

2σ2h − e−
(ε+|mj |)2

2σ2h

)

)

+
∑

j 6=i,mj 6=0

m2
j + σ2h√

2π

∫

mj+ε

σ
√

h

mj−ε

σ
√

h

e−
x2

2 dx.

Now, the factors εe−
ε2

2σ2h and ε
(

e−
(ε−|mj |)2

2σ2h + e−
(ε+|mj |)2

2σ2h

)

+ |mj |
(

e−
(ε−|mj |)2

2σ2h − e−
(ε+|mj |)2

2σ2h

)

of σ
√
h√

2π
are strictly

positive, so

∑

j 6=i

bj ≤ (n−NT )
σ2h√
2π

∫ ε

σ
√

h

− ε

σ
√

h

e−
x2

2 dx+
∑

j 6=i,mj 6=0

m2
j + σ2h√

2π

∫

mj+ε

σ
√

h

mj−ε

σ
√

h

e−
x2

2 dx,

where if ε(h)√
h

→ L as h → 0 then the first term of the rhs above tends to d := σ2
√
2π

∫ L
σ

−L
σ

e−
x2

2 dx < σ2, while each

term of the latter finite sum tends to 0, since
|mj |√

h
→ ∞, so the finite sum tends to 0. It follows that, for all i,

∑

j 6=i bj ≤ d+o(1), where d < σ2, so
∑n

i=1 ai

∑

j 6=i bj
∑n

i=1 ai
≤ d+o(1), and σ2−

∑n
i=1 ai

∑

j 6=i bj
∑n

i=1 ai
≥ σ2−d+o(1) → σ2−d > 0,

as we wanted.

We now check the asymptotic behavior of bi and ai when ε = ε(h) tends to 0 as h → 0 in such a way that
ε√
h
→ +∞. To this end, for fixed σ, we define

b(ε,m, h) := −σ
√
h√

2π

(

e−
(ε−m)2

2σ2h (ε+m) + e−
(ε+m)2

2σ2h (ε−m)

)

+
m2 + σ2h√

2π

∫
m+ε

σ
√

h

m−ε

σ
√

h

e−x2/2dx (21)

a(ε,m, h) :=
e−

(ε−m)2

2σ2h + e−
(ε+m)2

2σ2h

σ
√
h
√
2π

, (22)

so that bj(ε) = b(ε,mj , h) and aj(ε) = a(ε,mj , h), and note that, as h → 0, we have (see the Appendix for the

simple proof),

b(ε,m, h) =















σ2h− 2σ√
2π

ε
√
he−

ε2

2σ2h + h.o.t., if m = 0,

σ
|m|

√
2π

ε2
√
he−

(|m|−ε)2

2σ2h + h.o.t., if m 6= 0.

(23)

a(ε,m, h) =















2
σ
√
2π

1√
h
e−

ε2

2σ2h , if m = 0,

1
σ
√
2π

1√
h
e−

(|m|−ε)2

2σ2h + h.o.t., if m 6= 0,

(24)

It follows that

gi(ε) = ε2 + 2
∑

j 6=i

bj(ε)− 2IV = ε2 + 2
∑

j 6=i:mj 6=0

bj(ε) + 2
∑

j 6=i:mj=0

(

bj(ε)− σ2h
)

− 2
∑

j 6=i:mj 6=0

σ2h− 2σ2h

= ε2 +
2√
2π

√
hε





∑

j 6=i:mj 6=0

σ

|mj |
εe−

(|mj |−ε)2

2σ2h − 2
∑

j 6=i:mj=0

σe−
ε2

2σ2h



− 2
∑

j 6=i:mj 6=0

σ2h− 2σ2h+ h.o.t.. (25)

Given any sequence ε = ε(h) = εh, which tends to 0 as h → 0 in such a way that ε(h)√
h

→ +∞, we now show that

F (εh) = F0(εh) + R(εh), where F0(εh) is constituted by the leading terms of F , while R(εh) gives the remainder

higher order terms. A solution ¯̄ε of F = 0 non necessarily is such that F0(¯̄ε) = 0, however if with the εh above we

have F0(εh) → 0 then the whole F (εh) → 0, so it has to be true that εh is close (in a way that will become explicit

later) to one of the solutions ¯̄ε of F = 0.

Proposition 5. Under A4’, if εh → 0 as h → 0 in such a way that ε(h)√
h

→ +∞ then F (εh) = F0(εh) + h.o.t.,

where

F0(εh) :=
εh

h
√
h
e−

ε2h
2σ2h

(

εh − e−
ε2h

2σ2h√
h

4σ√
2π

) 1

σ
√
2π

.
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Proof. For simplicity, in what follows, we omit the dependence on h in the functions a(ε,m, h) and b(ε,m, h)

defined in (21-22). Let us recall that, under Assumption A4’, Nt is the number of jumps by time t, {γℓ}ℓ≥1 are

the consecutive jumps of J and {J} = {J}(n) := {i : ∆n
i N 6= 0}. It follows that, for h is small enough,

F (εh) =

n
∑

i=1

a(ε,mi)



ε2 + 2
∑

j 6=i

b(ε,mj)− 2IV





=
∑

i/∈{J}
a(ε,mi)



ε2 + 2
∑

j 6=i:j∈{J}
b(ε,mj) + 2

∑

j 6=i:j /∈{J}
b(ε,mj)− 2IV





+
∑

i∈{J}
a(ε,mi)



ε2 + 2
∑

j 6=i:j∈{J}
b(ε,mj) + 2

∑

j 6=i:j /∈{J}
b(ε,mj)− 2IV





= (n−NT )a(ε, 0)

[

ε2 − 2hσ2(NT + 1) + 2

(

NT
∑

k=1

b(ε, γk) + (n−NT − 1)(b(ε, 0)− σ2h)

)]

+

+

NT
∑

ℓ=1

a(ε, γℓ)



ε2 − 2hσ2NT + 2





∑

k 6=ℓ

b(ε, γk) + (n−NT )(b(ε, 0)− σ2h)









= (n−NT )
2

σ
√
h
√
2π

e−
ε2

2σ2h

[

ε2 − 2hσ2(NT + 1)− 4(n−NT − 1)
σε

√
h√

2π
e−

ε2

2σ2h

+ 2

NT
∑

k=1

σ

|γk|
ε2
√
h√

2π
e−

(|γk|−ε)2

2σ2h

]

+

+

NT
∑

ℓ=1

1

σ
√
h
√
2π

e−
(|γk|−ε)2

2σ2h

[

ε2 − 2hσ2NT − 4(n−NT )
σε

√
h√

2π
e−

ε2

2σ2h

+ 2
∑

k 6=ℓ

σ

|γk|
ε2
√
h√

2π
e−

(|γk|−ε)2

2σ2h

]

+ h.o.t..

In what follows we use the following notation:

vh =
εh√
h
, uℓh =

1√
2π

e−

(

vh− |γℓ|√
h

)2

2σ2 , sh =
1√
2π

e−
v2
h

2σ2 , pℓh = e
− |γℓ|

σ2h

( |γℓ|
2 −

√
hvh

)

.

Now, since uℓh = shpℓh and pℓh → 0, as h → 0,

F (εh) = (n−NT )
2

σ

√
hsh

[

v2h − 2σ2(NT + 1) + 2σvhsh

(

ε

NT
∑

k=1

1

|γk|
pkh − 2(n−NT − 1)

)]

+

+
1

σ

√
hsh

NT
∑

ℓ=1

pℓh

[

v2h − 2σ2NT + 2σvhsh



ε
∑

k 6=ℓ

1

|γk|
pkh − 2(n−NT )





]

+ h.o.t.

= (n−NT )
2

σ

√
hsh

[

v2h − 4σvhshn

]

+
1

σ

√
hsh

NT
∑

ℓ=1

pℓh

[

v2h − 4σvhshn

]

+ h.o.t.

=

(

n−NT +
1

2

NT
∑

ℓ=1

pℓh

)

2

σ

√
hsh

[

v2h − 4σvhshn

]

+ h.o.t.

=
2n

σ

√
hshvh

[

vh − 4σshn

]

+ h.o.t.

=
εh

h
√
h
e−

ε2h
2σ2h

(

εh − e−
ε2h

2σ2h√
h

4σ√
2π

) 1

σ
√
2π

. (26)
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Note that vh ≪ n, but sh → 0, so which is the leading term between vh and nsh depends on the choice of vh.

Remark 5. The asymptotic behavior (26) also holds for any drift process {at}t≥0 that has almost surely locally

bounded paths (recall that any cadlag a satisfies such a requirement) and that is independent on W . Indeed, for

nonzero drift, by conditioning also on a, we have that

F (εh) =
∑

i/∈{J}
a(ε, hāi)



ε2 − 2hσ2(NT + 1) + 2





NT
∑

k=1

b(ε, γk + hāik) +
∑

j 6=i:j /∈{J}
(b(ε, hāj)− σ2h)







+

+

NT
∑

ℓ=1

a(ε, γℓ + hāiℓ)



ε2 − 2hσ2NT + 2





∑

k 6=ℓ

b(ε, γk + hāik) +
∑

j 6=iℓ:j /∈{J}
(b(ε, hāj)− σ2h)







 ,

where āi =
∫ ti
ti−1

asds/h and the indices i1 < i2 < · · · < iNT
are defined such that ∆ikJ 6= 0, while ∆iJ = 0 for any

other i /∈ {i1, i2, . . . , iNT
}. Next, we can follow the same arguments as above using the facts that, if a has locally

bounded paths, for any i and k

a(ε, hāi) =
2

σ
h−1/2φ

(

ε

σ
√
h

)

+ h.o.t., a(ε, γk + hāik) =
1

σ
h−1/2φ

( |γk| − ε

σ
√
h

)

e−
γkāik

σ2 + h.o.t..

b(ε, hāi) = σ2h− 2σε
√
hφ

(

ε

σ
√
h

)

+ h.o.t., b(ε, γk + hāik) =
σ

|γk|
ε2
√
hφ

( |γk| − ε

σ
√
h

)

e−
γkāik

σ2 + h.o.t..

4.2 Asymptotic behavior of ε̄

Corollary 3. Under A1, A3, A4’ we have that

ε̄ ∼
√

2σ2h ln
1

h
, as h → 0.

Proof. In fact, from Proposition 4 and (26), we have that

F (ε̄h) =
2

σ
ns̄hv̄h

√
h
(

v̄h − ns̄h · 4σ
)

+ h.o.t. = 0,

where v̄h := ε̄h/
√
h and s̄h = e

−
ε̄2h

2hσ2√
2π

. Thus,

v̄h − ns̄h · 4σ + h.o.t. = 0, (27)

or, equivalently,

ε̄h − e−
ε̄2h

2hσ2

√
h

4σ√
2π

+ h.o.t. = 0,

which is exactly the condition in (16), entailing that

ε̄h ∼
√

2σ2h ln
1

h
, as h → 0.

Now we aim at approximating any optimal ε̄ := ε̄h, which is such that F (ε̄) = 0, using a sequence εh =
√
hvh.

To this end, we aim at making F (εh) → 0 as quickly as possible, the only possible way being rendering vh and nsh

(26) of the same order. So we want to choose vh such that

vh = nsh · 4σ√
2π

+ h.o.t., (28)

which is exactly the condition in (27).
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Remark 6. There exists a deterministic function wh of h such that w : (0, 1] → (0,+∞) and

1) wh → +∞
2) wh

√
h → 0

3) e−w2
h

whh
→

√
π
2

(29)

as h → 0. In fact, for example a function of type wh =
√

ln 1
h − 1

2 ln ln
1
h − ln yh, with any continuous function

yh tending to
√
π
2 as h → 0, satisfies the 3 conditions1. Then vh =

√
2σwh satisfies (28). However the quickest

convergence speed of F to 0 would be reached by choosing a function wh which satisfies the following three more

restrictive conditions, as h → 0,

1) wh → +∞
2) wh

√
h → 0

3′) e−w2
h

whh
≡

√
π
2 ,

(30)

where condition 3’) means that F0(εh) ≡ 0. In fact such a wh exists, since the following holds true2.

Theorem 5. There exists a unique deterministic function wh of h such that wh : (0, 1] → (0,+∞) and the three

conditions 1), 2) and 3’) are satisfied. Such a wh turns out to be differentiable and to satisfy also the ODE

w′
h = whh

1+2w2
h
, which entails that wh ≤ w1 +

1
2
√
2
log 1

h .

We finally reach the uniqueness of the optimal threshold ε̄ as a consequence of the following Proposition, whose

proof is in Appendix.

Proposition 6. The first derivative d
dεF (ε) of F is such that, when evaluated at a function εh of h such that

εh → 0, εh√
h
→ +∞, and εh = 4σ sh√

h
+ h.o.t., as h → 0, then

F ′(εh) = F1(εh) + h.o.t., as h → 0, where F1(εh) =
4

σ2π
e−

ε2h
σ2h

ε2h
h3

.

Remark 7. Uniqueness of ε̄. Since F1(εh) > 0 for any εh, we reach that for sufficiently small h we have d
dεF (εh) > 0

on any sequence εh as in the above Proposition. That entails that for any sufficiently small h the cMSE optimal ε̄

is unique. In fact if there existed two optimal ε̄
(1)
h < ε̄

(2)
h we would necessarily have that ε̄

(i)
h → 0,

ε̄
(i)
h√
h
→ +∞ and

ε̄
(i)
h = 4σ√

2π
s̄h√
h
+ h.o.t., but then, for small h, on such sequences F ′ > 0, and then on such sequences F is strictly

increasing, and thus F (ε̄
(1)
h ) < F (ε̄

(2)
h ), which is a contradiction, because in order to be optimal both sequences

have to satisfy F (ε̄
(i)
h ) = 0.

Remark 8. The asymptotic behavior of the optimal threshold ε̄ = ε̄(h) for the cMSE criterion is the same as the

one of the optimal threshold ε⋆ for the MSE criterion under FA jumps.

This is due to the fact that ε̄ solves F = 0, ε⋆ solves G = 0, F = F0 + h.o.t., G = G0 + h.o.t., and the leading

terms in F are the ones with mi = 0, which do not depend on ω, thus they are the same as for G. It follows

that, in the case of Lévy FA jumps, we have F = F0 + h.o.t. = E[F0] + h.o.t. = G + h.o.t.. Also, an alternative

heuristic justification is that we expect that F (ε) =
∑n

i=1 aigi
n · n ∼ nE[aigi], thus the asymptotic behavior of the

ε⋆ satisfying G = nE[aigi] = 0 is the same as any ε̄ satisfying F (ε) = 0.

Remark 9. Comparison with the results in [2]. In [2] a FA jumps process X is considered, either of Lévy type, with

jumps sizes having distribution density satisfying given conditions, or of Itô SM type, with deterministic absolutely

1We thank Andrey Sarychev for having provided such nice examples.
2We thank Salvatore Federico for having provided a such nice result. The proof is available upon request.
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continuous local characteristics (additive process). The estimators

Ĵn =

n
∑

i=1

∆iXI{|∆iX|>εh}, N̂n =

n
∑

i=1

I{|∆iX|>εh}

are considered, and, as h → 0, firstly it is shown that the condition εh√
h
→ +∞ is necessary and sufficient for the

convergence to 0 of both MSE( ˆIVn − IV ) (stronger condition implying consistency of ˆIVn) and MSE(Ĵn − JT ).

Secondly, the authors show that

MSE(N̂n −NT ) → 0 ⇔ e−
ε2h

2σ2h√
hεh

→ 0,

meaning that in order to have L2(Ω, P ) convergence to 0 of the estimation error N̂n −NT a stronger condition on

εh is needed, implying εh√
h
→ ∞. Thirdly, existence and uniqueness of an optimal threshold ε̌(h) minimizing

E[| ˆIV n − IV |2 + |N̂n −NT |2]

for fixed h is obtained, and the asymptotic expansion in h of ε̌(h) has leading term
√

3σ2h log 1
h . The factor 3 is

higher than the factor 2 of the leading terms of ε̄ and ε⋆: that is due to the fact that the minimization criterion for

ε̌(h) includes also the error on NT , which requires that ε̌(h)√
h

is higher than ε̄√
h
, and thus ε̌(h) > ε̄(h) is necessary.

5 A NEW METHOD FOR FINITE JUMP ACTIVITY PROCESSES

In this section, we propose a new method to tuneup the threshold parameter ε :=
√

r(σ, h) of the Threshold

Realized Variance (TRV) introduced in (2). This is based on the conditional mean square error cMSE(ε) =

E[( ˆIV −IV )2|σ, J ] studied in Section 4. We illustrate the method for a driftless FA process with constant volatility

σ. As proved therein, the optimal threshold ε̄ is such that

F (ε̄) =

n
∑

i=1

ai(ε̄)gi(ε̄) = 0, gi(ε̄) = ε̄2 + 2
∑

j 6=i

bj(ε̄)− 2nhσ2,

where ai(ε) and bi(ε) are rewritten here for easy reference:

ai(ε) := a(ε,mi, σ) :=
e−

(ε−mi)
2

2σ2h + e−
(ε+mi)

2

2σ2h

σ
√
2πh

,

bi(ε) := b(ε,mi, σ) := −σ
√
h√

2π

(

e−
(ε−mi)

2

2σ2h (ε+mi) + e−
(ε+mi)

2

2σ2h (ε−mi)

)

+
m2

i + σ2h√
2π

∫

mi+ε

σ
√

h

mi−ε

σ
√

h

e−x2/2dx.

For future reference we set m = (m1, . . . ,mn) and

F (ε;σ,m) :=

n
∑

i=1

a(ε,mi, σ)



ε2 + 2
∑

j 6=i

b(ε,mj , σ)− 2nhσ2





The main issue with the optimal threshold ε̄ lies on the fact that this depends on σ and the increments m =

(m1, . . . ,mn) of the jump process, which we don’t know. Note also that, for h small enough, each mi will be either

0 or one of the jumps of the process and a good proxy of mi is actually (∆n
i X)1{|∆n

i X|>ε̄}. The idea is then to

iteratively estimating ε̄, σ, and m as follows: 3

1. Start with some initial ‘guesses’ of σ and m, which we call σ̂0 and m̂0. In the sequel, we obtain σ̂0 by

assuming that there is no jump; that is, we set m̂0 = (0, . . . , 0) and σ̂2
0 = T−1

∑n
i=1(∆

n
i X)2.

3To be consistent with section 4, I corrected ε
⋆ here with ε̄ and put ε̌ for the optimal threshold of [2]. Check whether you approve.
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2. Using σ̂0 and m̂0, we then find an initial estimate for the optimum ε̄ that we denote ε̄0. Thus, under the

no-jump initial guess of the previous item, ε̄0 is such that F (ε̄0; σ̂0, m̂0) = 0 or, more specifically, ε̄0 solves

the equation:

ε2 + 2(n− 1)



−2σ̂0

√
h√

2π
e
− ε2

2σ̂2
0h ε+

σ̂2
0h√
2π

∫ ε

σ̂0
√

h

−ε

σ̂0
√

h

e−x2/2dx



− 2nhσ̂2
0 = 0. (31)

It is easy to see that ε̄0 is of the form vnσ̂0

√
h, where vn is the unique solution of the equation:

v2n + 4(n− 1)

(

−vn
1√
2π

e−
v2
n
2 +

1√
2π

∫ vn

0

e−x2/2dx

)

− 2n = 0. (32)

Figure 1 shows that vn ranges from about 3 to 4 when n ranges from 100 to 10000.

3. Once we have an initial estimate of ε̄0, we can update our estimates of σ and m using the estimators:

σ̂2
1 := ˆIV n(ε̄0) :=

n
∑

i=1

(∆iX)21{|∆iX|≤ε̄0}, m̂1 := ((∆n
1X)1{|∆n

1 X|>ε̄0}, . . . , (∆
n
nX)1{|∆n

nX|>ε̄0}) (33)

4. We continue this procedure iteratively by setting ε̄k such that F (ε̄k; σ̂k, m̂k) = 0, which is then used to get

σ̂2
k+1 :=

n
∑

i=1

(∆iX)21{|∆iX|≤ε̄k}, m̂k+1 := ((∆n
1X)1{|∆n

1 X|>ε̄k}, . . . , (∆
n
nX)1{|∆n

nX|>ε̄k}). (34)

We stop when the sequence of estimates σ̂k+1 stabilizes (e.g., when |σ̂k+1 − σ̂k| ≤ tol, for some desired small

tolerance tol).
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Figure 1: The solution vn of equation (32) as a function of n.

The previous procedure resembles the one introduced in [2], which is based on choosing the threshold ε so to

minimize E[| ˆIVn − IV |2 + |N̂n −NT |2], or equivalently the expected number of jumps miss-classifications:

Loss(ε) := E

[

n
∑

i=1

(

1{|∆n
i X|>ε,∆n

i N=0} + 1{|∆n
i X|≤ε,∆n

i N>0}
)

]

. (35)

It was proved therein that, for a FA Lévy processes, the optimal threshold, denoted ε̌h, is asymptotically equivalent

to
√

3σ2h ln(1/h), as h → 0. Using this information, an iterative method was proposed, in which, given an initial

estimate σ̌0 of σ, it was set

ε̌k :=

√

3σ̌2
kh ln

1

h
, σ̌2

k+1 :=

n
∑

i=1

(∆iX)21{|∆iX|≤ε̌k}, k ≥ 0. (36)
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In the light of the procedure used in [2], we adopt here also the following simpler one, other than the procedure

(31)-(34) described above. Since, as proved in Section 4, the optimal threshold ε̄h has the asymptotic behavior
√

2σ2h ln(1/h), as h → 0, it is natural to consider the following iterative method to estimate ε̄:

ε̄⋆k :=

√

2σ̄2
kh ln

1

h
, σ̄2

k+1 :=

n
∑

i=1

(∆iX)21{|∆iX|≤ε̄⋆k}, k ≥ 0, (37)

starting again from an initial guess σ̄0 of σ. It can be proved that if we take both σ̌2
0 and σ̄2

0 equal to the realized

quadratic variation T−1
∑n

i=1(∆
n
i X)2 in both (36) and (37), then the sequences of estimates {σ̄k}k≥0, {σ̌k}k≥0 is

nonincreasing and, thus, eventually σ̌k = σ̌k+1 and σ̄k = σ̄k+1, for some k. So, we can (and will) set the tolerance

tol to 0.

5.1 Simulation results

We now proceed to assess the methods introduced above. We take a Lévy Merton’s log-normal model of the form:

Xt = at+ σWt +

Nt
∑

j=1

γj ,

where N is a Poisson process with intensity λ and {γi}i≥1 is an independent sequence of independent normally

distributed variables with mean and standard deviation µJmp and σJmp, respectively.

We consider the following estimators:

1. σ0 :=
√

T−1
∑n

i=1(∆
n
i X)2;

2. The estimator σ̂1 as defined in (33) with initial guesses σ̂2
0 = T−1

∑n
i=1(∆

n
i X)2 and m̂0 = (0, . . . , 0);

3. σ̂k found with the new method described by the iterative formulas (34). We stop when |σ̂k − σ̂k−1| ≤ tol =

10−5;

4. The estimator σ̌2
1 as in (36) with k = 0, using the threshold

√

3σ̌2
0h log(1/h) with σ̌0 =

√

T−1
∑n

i=1(∆
n
i X)2;

5. The estimator σ̌k defined by (36) with k such that σ̌k = σ̌k−1, k ≥ 1;

6. The estimator σ̄2
1 as in (37) with k = 1, using the threshold ε̄⋆0 =

√

2σ̄2
0h log(1/h) with σ̄0 =

√

T−1
∑n

i=1(∆
n
i X)2;

7. The estimator σ̄k defined by the iterative formulas (37) and with k such that σ̄k = σ̄k−1, k ≥ 1;

8. Threshold Realized Variance using the threshold ε = hω with ω = 0.495

9. Threshold Realized Variance using the threshold ε = 2hω with ω = 0.495

10. Realized Bipower Variation (BPV)

11. Threshold Realized Variance using a threshold of the form 4hω
√

BPV/T with ω = 0.49 (this is used in the

recent work [4]);

12. The estimator σ̂2
1 :=

∑n
i=1(∆iX)21{|∆iX|≤ε̄0} given in (33) where ε̄0 is such that F (ε̄0; σ̂0, m̂0) = 0, but

this time taking σ̂2
0 = T−1

∑n
i=1(∆

n
i X)21{|∆n

1 X|≤ε̄⋆0} and m̂0 := ((∆n
1X)1{|∆n

1 X|>ε̄⋆0}, . . . , (∆
n
nX)1{|∆n

nX|>ε̄⋆0})

with ε̄⋆0 as defined in the item 6 above.

13. The estimator σ̂2
k defined in (34), where ε̄k is such that F (ε̄k; σ̂k, m̂k) = 0, where ε̄0 is given as in the item

12 above, and k is such that |σ̂k − σ̂k−1| ≤ tol = 10−5.
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The adopted unit of measure is 1 year (250 days) and we consider 5 minute observations over a 1 month time

horizon with a 6.5 hours per day open market. For our first simulation, we use the following parameters:

σ = 0.4, σJmp = 3
√
h, µJmp = 0, λ = 100, h =

1

250(6.5)(12)
. (38)

The dependence of σJmp on σJmp on
√
h was done for easier comparison with standard deviation of the increments

of the continuous component, which is 0.4
√
h. So, the standard deviation of the jumps is about 7.5 times the

standard deviation of the continuous component increment. The parameter values in (38) yield an expected

annualized volatility of 0.45, which is reasonable. Table 1 below shows the sample means and standard deviations

based on 10000 simulations (below Loss equals the number of jump misclassifications as defined by (35), while N

is the number of iterations needed to find the estimator’s value). As shown therein, the new proposed estimator

(items 3, 13) performs the best, followed by the iterative method 7 based on (37). It takes on average 2 iterations

to finish if we take as an initial guess for the threshold the solution of Eq. (31). However, if we take advantage of

the asymptotic behavior of ε̄ as in the method 12 above, one iteration suffices.

Method σ̂ std(σ̂) Loss std(Loss) ε std(ε) N std(N)

1 0.45311689 0.03104886

2 0.40132 0.00732 3.66530 1.92646 0.01228 0.00084 1 0

3 0.40029 0.00727 3.48050 1.86772 0.01099 0.00048 2.39300 0.55909

4 0.4058 0.0085 4.9251 2.2672 0.0176 0.0012 1 0

5 0.40398 0.00789 4.49490 2.14551 0.01569 0.00031 2.31500 0.53796

6 0.40288 0.00765 4.16110 2.07624 0.01437 0.00098 1 0

7 0.40166 0.00741 3.75950 1.95909 0.01274 0.00024 2.31960 0.50723

8 0.3842 0.0062 16.2724 4.0291 0.0075 0 1 0

9 0.4033 0.0075 4.2897 2.0800 0.0150 0 1 0

10 0.413 0.011

11 0.40181 0.00743 3.81300 1.96485 0.01301 0.00034 1 0

12 0.400429 0.007206 3.468400 1.873967 0.011118 0.000517 1 0

13 0.400282 0.007218 3.464100 1.876983 0.010968 0.000466 1.711700 0.587041

Table 1: Estimation of the volatility σ = 0.4 for a log-normal Merton model based on 10000 simulations of 5-minute

observations over a 1 month time horizon. The jump parameters are λ = 100, σJmp = 3
√
h and µJmp = 0.

We now double the intensity of jumps and consider the following parameter setting:

σ = 0.4, σJmp = 3
√
h, µJmp = 0, λ = 200, h =

1

250(6.5)(12)
,

which yields an expected annualized volatility of 0.5. The results are shown in Table 2. We again notice that

the methods 3 and 13 outperforms all the others, followed by method 7 based on the asymptotic behavior ε̄h ∼
√

2σ2h ln(1/h).

Finally, we consider a jump intensity of 1000 jumps per year but we reduce σ and σJmp in order to obtain an

expected annualized volatility of 0.39. Concretely, we set:

σ = 0.2, σJmp = 1.5
√
h, µJmp = 0, λ = 1000, h =

1

250(6.5)(12)
,

The results are shown in Table 3. In spite of being a tough setting, the new method does a good job and outperforms

all others, except method 7, which is based on the asymptotics ε̄h ∼
√

2σ2h ln(1/h). Note that in this case it takes

on average 5 iterations for the iterative methods to converge.
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Est σ̂ std(σ̂) Loss std(Loss) ε std(ε) N std(N)

1 0.5002 0.0385

2 0.40482 0.00792 7.80670 2.83657 0.01356 0.00104 1 0

3 0.402181 0.007588 6.917800 2.655174 0.011623 0.000908 2.718900 0.723834

4 0.4159 0.0111 10.5434 3.3448 0.0194 0.0015 1 0

5 0.408570 0.008844 8.980800 3.038413 0.015871 0.000344 2.852900 0.613921

6 0.40858 0.00884 8.94540 3.05446 0.01586 0.00122 1 0

7 0.403786 0.007761 7.449100 2.754445 0.012807 0.000246 2.813000 0.557012

8 0.38401 0.00628 18.46560 4.25603 0.00749 0 1 0

9 0.40682 0.00792 8.48660 2.89431 0.01499 0 1 0

10 0.4265 0.0128

11 0.404555 0.007859 7.730600 2.794102 0.013432 0.000404 1 0

12 0.402950 0.007601 7.205800 2.721909 0.012204 0.000934 1 0

13 0.402160 0.007587 6.965600 2.661903 0.011617 0.000905 2.105500 0.709380

Table 2: Estimation of the volatility σ = 0.4 for a log-normal Merton model based on 10000 simulations of 5-minute

observations over a 1 month time horizon. The jump parameters are λ = 200, σJmp = 3
√
h and µJmp = 0.

Est σ̂ std(σ̂) Loss std(Loss) ε std(ε) N std(N)

1 0.3921 0.0279

2 0.246 0.0127 56.3 8.29 0.0106 0.000756 1 0

3 0.21563 0.00860 41.72400 7.80543 0.00728 0.00083 5.60410 1.57455

4 0.29618 0.02148 70.17440 9.20290 0.01523 0.00108 1 0

5 0.23 0.0108 49.8 8.39 0.00892 0.00042 5.86 1.33

6 0.265 0.0163 62.6 8.74 0.0124 0.00088 1 0

7 0.211 0.00588 39.1 6.79 0.00671 0.00018 5.10 0.910

8 0.21663 0.00518 42.74350 6.58275 0.00749 0 1 0

9 0.293 0.014 69.497 8.293 0.015 0 1 0

10 0.2664 0.0129

11 0.224 0.00779 47 7.39 0.00839 0.000405 1 0

12 0.241 0.0121 54.7 8.16 0.0102 0.000801 1 0

13 0.216 0.00863 41.8 7.74 0.00728 0.000835 5.36 1.64

Table 3: Estimation of the volatility σ = 0.2 for a log-normal Merton model based on 10000 simulations of 5-minute

observations over a 1 month time horizon. The jump parameters are λ = 1000, σJmp = 1.5
√
h and µJmp = 0.

6 Conclusions

We consider the problem of estimating the integrated variance IV of a semimartingale model X with jumps for the

log price of a financial asset. In view of adopting the truncated realized variance of X, we look for a theoretical and

practical way to select an optimal threshold in finite samples. We consider the following two optimality criteria:

minimization of MSE, the expected quadratic error in the estimation of IV; and minimization of cMSE, the expected

quadratic error conditional to the realized paths of the jump process J and of the volatility process (σs)s≥0. Under

given assumptions, we find that for each criterion an optimal TH exists, is unique and is a solution of an explicitly
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given equation, the equation being different under the two criteria. Also, under each criterion, an asymptotic

expansion with respect to the step h between the observations is possible for the optimal TH . The leading terms

of the two expansions turn out to be proportional to the modulus of continuity of the Brownian motion paths and

to the spot volatility of X, with proportionality constant
√
2− Y , Y being the jump activity index of X. It turns

out that the threshold estimator of IV constructed with the optimal TH is consistent, at least in the finite activity

jumps case. The results obtained for the cMSE criterion allow for a novel numerical way to tuneup the threshold

parameter in finite samples. We illustrate the superiority of the new method on simulated data. Minimization of

the conditional mean square estimation error in the presence of infinite activity jumps in X is object of further

research.

7 Appendix: additional proofs

Proof of Lemma 1. Throughout, pt denotes the density of Jt and recall that the characteristic function of Jt

is of the form E
[

eiuJt
]

= e−ct|u|Y . Let us also recall that the Fourier transform and its inverse are defined by

Fg(x) = 1√
2π

∫

R
g(z)e−izxdz and F−1G(x) = 1√

2π

∫

R
G(z)eizxdz. In what follows, we set

h(u) :=

(

F−1φ

( ·
σ
√
h
− ε

σ
√
h

))

(u) =
1√
2π

∫

φ

(

x

σ
√
h
− ε

σ
√
h

)

eiuxdx.

Let us start by noting that

E

[

φ

(

ε

σ
√
h
− Jh

σ
√
h

)]

=

∫

φ

(

x

σ
√
h
− ε

σ
√
h

)

ph(x)dx =

∫

(Fh) (x) ph(x)dx =

∫

h (u) (Fph)(u)du,

where, since J is a symmetric stable process, (Fph)(u) = (2π)−1/2e−ch|u|Y . Therefore, we obtain the representation

E

[

φ

(

ε

σ
√
h
± Jh

σ
√
h

)]

=
σh1/2

2π

∫

e−ch|u|Y −σ2hu2

2 +iεudu. (39)

In order to prove (10), let us make the change of variables w = σh1/2u and, then, expand in a Taylor’s expansion

exp(−cσ−Y h1−Y/2|w|Y ) as follows:

1

2π

∫

e
−cσ−Y h1−Y/2|w|Y −w2

2 +i ε

σh1/2
w
dw =

1

2π

∫

e
−w2

2 +i ε

σh1/2
w
dw +

∞
∑

k=1

Ik,n,

where

Ik,n :=
1

k!
(−c)kσ−kY hk(1−Y/2) 1√

2π

∫

|w|kY e−
w2

2 +i ε

σh1/2
w
dw

=
1

k!
(−c)kσ−kY hk(1−Y/2) 2√

2π

∫ ∞

0

wkY e−
w2

2 cos
( ε

σh1/2
w
)

dw.

The first term of (10) is then clear. For the subsequent terms, let us apply the formula for the cosine integral

transformation of wkY e−w2/2 as well as the asymptotics for the generalized hypergeometric series or Kummer’s

function M(a, b, z):

Ik,n =
1

k!
(−c)kσ−kY hk(1−Y/2) 2√

2π

{

1

2
2

1
2 (1+kY )Γ

(

1

2
+

kY

2

)

M

(

1

2
+

kY

2
;
1

2
;− ε2

2σ2h

)}

=
1

k!
(−c)kσ−kY hk(1−Y/2) 2√

2π

(

1

2
2

1
2 (1+kY )Γ

(

1

2
+

kY

2

))

×
(

Γ
(

1
2

)

Γ
(

−kY
2

)

(

ε2

2σ2h

)− 1
2− kY

2

+
Γ
(

1
2

)

Γ
(

1
2 + kY

2

)e−
ε2

2σ2h

(

ε2

2σ2h

)
kY
2

)

+ h.o.t..
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In the asymptotic formula for the Kummer’s function above, the first term (respectively, second term) vanishes

if Γ(−kY/2) (respectively, Γ(1/2 + kY/2)) are infinity. This happens when −kY/2 or 1/2 +kY/2 are nonpositive

integers. It is now evident that there exists nonzero constants ak and bk such that

Ik,n =
ak

Γ
(

−kY
2

)ε−1−kY hk+ 1
2 +

bk

Γ
(

1
2 + kY

2

)e−
ε2

2σ2h εkY hk(1−Y ) + h.o.t..

Note that

ε−1−kY hk+ 1
2 ≫ ε−1−(k+1)Y hk+1+ 1

2 ⇐⇒ ε ≫ h1/Y ⇐= ε ≫ h1/2,

ε−1−Y h1+ 1
2 ≫ ε−1−kY hk+ 1

2 ≫ e−
ε2

2σ2h εkY hk(1−Y ).

Therefore, ε−1−Y h1+ 1
2 ≫ Ik,n, for all k > 1.

We now show (11). Note that

E

[

Jhφ

(

ε

σ
√
h
− Jh

σ
√
h

)]

=

∫

φ

(

x

σ
√
h
− ε

σ
√
h

)

xph(x)dx =

∫

h (u)F(xph(x))(u)du,

where

F(xph(x))(u) = i
d

du
(Fph)(u) =

i√
2π

d

du
e−ch|u|Y =

−i√
2π

e−ch|u|Y Y sign(u)ch|u|Y−1.

Therefore, we have the following representation:

E

[

Jhφ

(

ε

σ
√
h
− Jh

σ
√
h

)]

= σ
−iY c√

2π
h3/2

∫

sign(u)|u|Y−1e−ch|u|Y −σ2hu2

2 +iεudu.

Furthermore,

E

[

Jhφ

(

ε√
h
− Jh√

h

)]

= 2σ
Y c√
2π

h3/2

∫ ∞

0

uY−1e−chuY −σ2hu2

2 sin (εu) du

= 2σ−(Y−1) Y c√
2π

h
3−Y

2

∫ ∞

0

wY−1e−cσ−Y h1−Y/2wY −w2

2 sin
(

σ−1εh−1/2w
)

dw.

Next, we expand in a Taylor’s expansion exp(−cσ−Y h1−Y/2wY ) as follows:

1√
2π

∫ ∞

0

wY−1e−cσ−Y h1−Y/2wY −w2

2 sin
(

σ−1εh−1/2w
)

dw =
∞
∑

k=0

Ik,n,

where

Ik,n :=
1

k!
(−c)kσ−Y khk(1−Y/2) 1√

2π

∫ ∞

0

w(k+1)Y−1e−
w2

2 sin
(

εh−1/2w
)

dw.

Then, we again apply the following formula for the sine integral transformation of w(k+1)Y−1e−w2/2:

Ik,n =
1

k!
(−c)kσ−Y khk(1−Y/2) 1√

2π

{

1

2
2

1
2 (1+(k+1)Y )Γ

(

1

2
+

(k + 1)Y

2

)(

ε2

h

)

M

(

1

2
+

(k + 1)Y

2
;
3

2
;− ε2

2h

)}

.

Finally, we use the relationship

M

(

1

2
+

(k + 1)Y

2
;
3

2
;− ε2

2h

)

=
Γ( 32 )

Γ
(

1− (k+1)Y
2

)

(

ε2

2h

)− 1
2−

(k+1)Y
2

+
Γ
(

3
2

)

Γ
(

1
2 + (k+1)Y

2

)e−
ε2

2σ2h

(

− ε2

2σ2h

)−1+
(k+1)Y

2

+ h.o.t.,

which, in turn shows that,

Ik,n ≪ I1,n ≪ hε1−Y .

We then conclude the result of the Lemma.
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Proof of Lemma 2. Let

I±n := E

[

Φ̄

(

ε

σ
√
h
− Jh

σ
√
h

)

1{

±
(

ε

σ
√

h
− Jh

σ
√

h

)

≥0
}

]

For I+n , let us note that for a constant K, Φ̄(z) ≤ Kφ(z) for all z ≥ 0 and, thus,

I+n ≤ KE

[

φ

(

ε

σ
√
h
− Jh

σ
√
h

)

1{

ε

σ
√

h
− Jh

σ
√

h
≥0

}

]

= O

(

E

[

φ

(

ε

σ
√
h
− Jh

σ
√
h

)])

.

For the other term, we decompose it as follows:

I−n =

∫

R

φ(u)P

[

0 ≥ ε

σ
√
h
− Jh

σ
√
h
, u ≥ ε

σ
√
h
− Jh

σ
√
h

]

du

=

∫ ∞

0

φ(u)P

[

0 ≥ ε

σ
√
h
− Jh

σ
√
h

]

du+

∫ 0

−∞
φ(u)P

[

u ≥ ε

σ
√
h
− Jh

σ
√
h

]

du

=
1

2
P

[

J1 ≥ h− 1
Y ε

]

+

∫ 0

−∞
φ(u)P

[

J1 ≥ h− 1
Y ε− σuh

1
2− 1

Y

]

du.

The first term above is well-known to be P
[

J1 ≥ h−1/Y ε
]

= Y −1C
(

h−1/Y ε
)−Y

+ O
(

ε−2Y h2
)

. For the second

term, let us first recall that there exists a constant K such that for all x > 0,

|E(x)| :=
∣

∣

∣

∣

P [J1 ≥ x]− C

Y
x−Y

∣

∣

∣

∣

≤ Kx−2Y . (40)

Therefore,
∫ 0

−∞
φ(u)P

[

J1 ≥ h− 1
Y ε− σuh

1
2− 1

Y

]

du =
C

Y

∫ 0

−∞
φ(u)

(

h− 1
Y ε− σuh

1
2− 1

Y

)−Y

du

+

∫ 0

−∞
φ(u)E

(

h− 1
Y ε− σuh

1
2− 1

Y

)

du.

For the first term above, note that

1

hε−Y

∫ 0

−∞
φ(u)

(

h− 1
Y ε− σuh

1
2− 1

Y

)−Y

du =

∫ 0

−∞
φ(u)

(

1− σuε−1h1/2
)−Y

du,

which, by the dominated convergence theorem, converges to 1/2, because ε−1h1/2 → 0, as n → ∞. Similarly, using

(40), we have
∣

∣

∣

∣

∫ 0

−∞
φ(u)E

(

h− 1
Y ε− σuh

1
2− 1

Y

)

du

∣

∣

∣

∣

≤ K

∫ 0

−∞
φ(u)

(

h− 1
Y ε− σuh

1
2− 1

Y

)−2Y

du = O
(

ε−2Y h2
)

.

Therefore, we finally conclude that I−n = Y −1Chε−Y +O
(

ε−2Y h2
)

, which implies (12).

We now show (13). To this end, let us first consider

E1,h(ε) := E
[

J2
h1{0≤σWh+Jh≤ε,Jh≥0,Wh≥0}

]

= h2/Y

∫ εσ−1h− 1
2

0

φ(x)

∫ h− 1
Y ε−σh

1
2
− 1

Y x

0

u2p1(u)dudx

= h
2
Y

(

ε

σh
1
2

)∫ 1

0

φ

(

ε

σh
1
2

w

)∫ h− 1
Y ε(1−w)

0

u2p1(u)dudx.

Let E(u) := p1(u)− Cu−Y−1 and let us recall that, for a constant K, |E(u)| ≤ K
(

u−Y−1 ∧ u−2Y−1
)

≤ Ku−2Y−1,

for all u > 0. Next,

E1,h(ε) = Ch
2
Y

(

ε

σh
1
2

)∫ 1

0

φ

(

ε

σh
1
2

w

)∫ h− 1
Y ε(1−w)

0

u1−Y dudx

+ h
2
Y

(

ε

σh
1
2

)∫ 1

0

φ

(

ε

σh
1
2

w

)∫ h− 1
Y ε(1−w)

0

u2E(u)dudw
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For the first term above, note that

1

2− Y

∫ 1

0

φ

(

ε

σh
1
2

w

)

(

h− 1
Y ε(1− w)

)2−Y

dw =
h− 2−Y

Y ε2−Y

2− Y

∫ 1

0

φ

(

ε

σh
1
2

w

)

(1− w)
2−Y

dw

∼ 2−1h
− 2−Y

Y ε2−Y

2− Y

(

σh
1
2

ε

)

.

We divide the second term in two cases. If Y ≤ 1, then
∣

∣

∣

∣

∣

∣

∫ 1

0

φ

(

ε

σh
1
2

w

)∫ h− 1
Y ε(1−w)

0

u2E(u)dudx

∣

∣

∣

∣

∣

∣

≤ K
1

2− 2Y

∫ 1

0

φ

(

ε

σh
1
2

w

)

(

h− 1
Y ε(1− w)

)2−2Y

dw

≤ K
h− 2−2Y

Y ε2−2Y

2− 2Y

∫ 1

0

φ

(

ε

σh
1
2

w

)

(1− w)
2−2Y

dw

∼ 2K
h− 2−2Y

Y ε2−2Y

2− 2Y

(

σh
1
2

ε

)

.

Note that the last limit is valid provided that
∫ 1

0
(1− w)

2−2Y
dw < ∞, which holds true when Y ≤ 1. For Y > 1,

let us first observe that
∫ z

0

u2
(

u−Y−1 ∧ u−2Y−1
)

du ≤ 1

2− Y
+ 1{z>1}

1− z2(1−Y )

2(Y − 1)
≤ 1

2− Y
+

1

2(Y − 1)
. (41)

Therefore, for a constant K,
∣

∣

∣

∣

∣

∣

∫ 1

0

φ

(

ε

σh
1
2

w

)∫ h− 1
Y ε(1−w)

0

u2E(u)dudx

∣

∣

∣

∣

∣

∣

≤ K

∫ 1

0

φ

(

ε

σh
1
2

w

)

dw ∼ K

(

σh
1
2

ε

)

.

We conclude that

E1,h(ε) =
2−1C

2− Y
hε2−Y +O

(

h2ε2−2Y
)

+O
(

h
2
Y

)

.

Next, we consider

E2,h(ε) := E
[

J2
h1{0≤σWh+Jh≤ε,Jh≥0,Wh≤0}

]

= h2/Y

∫ 0

−∞
φ(x)

∫ h− 1
Y ε−σh

1
2
− 1

Y x

−σh
1
2
− 1

Y x

u2p1(u)dudx

= Ch2/Y

∫ 0

−∞
φ(x)

∫ h− 1
Y ε−σh

1
2
− 1

Y x

−σh
1
2
− 1

Y x

u1−Y dudx

+ h2/Y

∫ 0

−∞
φ(x)

∫ h− 1
Y ε−σh

1
2
− 1

Y x

−σh
1
2
− 1

Y x

u2E(u)dudx.

The first term on the right-hand side above can be written as

C

2− Y
h2/Y

(

h− 1
Y ε

)2−Y
∫ 0

−∞
φ(x)







(

1− σh
1
2

ε
x

)2−Y

−
(

−σh
1
2

ε
x

)2−Y






dx ∼ 2−1 C

2− Y
hε2−Y ,

where the last asymptotic relationship follows from dominated convergence theorem and the facts that h1/2/ε → 0

and
∫ 0

−∞(1− x)2−Y φ(x)dx < ∞. For the second term of E2,h(ε), we have two cases. For Y ≤ 1, we have

h
2
Y

∣

∣

∣

∣

∣

∣

∫ 0

−∞
φ(x)

∫ h− 1
Y ε−σh

1
2
− 1

Y x

−σh
1
2
− 1

Y x

u2E(u)dudx

∣

∣

∣

∣

∣

∣

≤ Kh
2
Y

∫ 0

−∞
φ(x)

∫ h− 1
Y ε−σh

1
2
− 1

Y x

−σh
1
2
− 1

Y x

u1−2Y dudx

=
K

2(1− Y )
h

2
Y

(

h− 1
Y ε

)2−2Y
∫ 0

−∞
φ(x)







(

1− σh
1
2

ε
x

)2(1−Y )

−
(

−σh
1
2

ε
x

)2(1−Y )






dx ∼ Kh2ε2−2Y ,
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where again we used dominated convergence and use the fact that
∫ 0

−∞ φ(x)(1− x)2(1−Y )dx < ∞. For Y > 1, we

just use (41) to deduce that

h
2
Y

∫ 0

−∞
φ(x)

∫ h− 1
Y ε−σh

1
2
− 1

Y x

−σh
1
2
− 1

Y x

u2|E(u)|dudx ≤ K ′h
2
Y

∫ 0

−∞
φ(x)dx,

for a constant K ′. Finally, we conclude that

E2,h = 2−1 C

2− Y
hε2−Y +O

(

h2ε2−2Y
)

+O
(

h
2
Y

)

.

Finally, let us consider

E3,h(ε) := E
[

J2
h1{0≤σWh+Jh≤ε,Jh≤0,Wh≥0}

]

= h2/Y

∫ σ−1h− 1
2 ε

0

φ(x)

∫ 0

−σh
1
2
− 1

Y x

u2p1(u)dudx

+ h2/Y

∫ ∞

σ−1h− 1
2 ε

φ(x)

∫ h− 1
Y ε−σh

1
2
− 1

Y x

−σh
1
2
− 1

Y x

u2p1(u)dudx.

Using the fact that p1(u) ≤ Ku−Y−1 for a constant K and all u > 0, the first term above is such that

h2/Y

∫ σ−1h− 1
2 ε

0

φ(x)

∫ σh
1
2
− 1

Y x

0

u2p1(u)dudx ≤ Kh2/Y

∫ σ−1h− 1
2 ε

0

φ(x)

∫ σh
1
2
− 1

Y x

0

u1−Y dudx

=
K

2− Y

(

σh
1
2− 1

Y

)2−Y
∫ σ−1h− 1

2 ε

0

φ(x)x2−Y dx

∼ K

2− Y
h

4−Y
2

∫ ∞

0

φ(x)x2−Y dx = o
(

hε2−Y
)

.

Similarly, the second term can be written as

h2/Y

∫ ∞

σ−1h− 1
2 ε

φ(x)

∫ σh
1
2
− 1

Y x

σh
1
2
− 1

Y x−h− 1
Y ε

u2p1(u)dudx ≤ K

2− Y

(

σh
1
2− 1

Y

)2−Y
∫ ∞

σ−1h− 1
2 ε

φ(x)x2−Y dx

= o
(

h
4−Y

2

)

= o
(

hε2−Y
)

.

Putting together the previous results, we obtain that

Eh(ε) = 2E
[

J2
h1{0≤σWh+Jh≤ε}

]

= 2E1,h(ε) + 2E2,h(ε) + 2E3,h(ε)

=
2C

2− Y
hε2−Y +O

(

h2ε2−2Y
)

+O
(

h
4−Y

2

)

+O
(

h
2
Y

)

.

Proof of (23). Let

N̄(x) =

∫ ∞

x

φ(z)dz, R(x) =

∫ ∞

x

φ(z)dz − φ(x)

x

and recall that, for x > 0,

N̄(x) ≤ 1

x
φ(x), |R(x)| ≤ φ(x)

x3
.
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Then, for fixed m > 0 and h small enough such that εh < m, we have

b(ε,m, h) = σ
√
hφ

(

m− ε

σ
√
h

)(

m2

m− ε
−m

)

− σ
√
hφ

(

m+ ε

σ
√
h

)(

m2

m+ ε
−m

)

− σ
√
hφ

(

m− ε

σ
√
h

)

ε− σ
√
hφ

(

m+ ε

σ
√
h

)

ε

+ σ3h3/2φ

(

m− ε

σ
√
h

)(

1

m− ε

)

− σ3h3/2φ

(

m+ ε

σ
√
h

)(

1

m+ ε

)

± (m2 + σ2h)R

(

m∓ εh

σ
√
h

)

=
σ

m

√
hφ

(

m− ε

σ
√
h

)

ε2 − σ

m

√
hφ

(

m+ ε

σ
√
h

)

ε2

+
σ

m(m− ε)

√
hφ

(

m− ε

σ
√
h

)

ε3 − σ

m(m+ ε)

√
hφ

(

m+ ε

σ
√
h

)

ε3

+
σ3

m− ε
h3/2φ

(

m− ε

σ
√
h

)

− σ3

m+ ε
h3/2φ

(

m+ ε

σ
√
h

)

± (m2 + σ2h)R

(

m∓ εh

σ
√
h

)

It is now clear that (23) holds true. We can similarly deal with the case m < 0. The asymptotic behavior for

a(ε,m, h) is direct.

Proof of Proposition 6. Let us fix h, and nh = 1, then d
dεF (ε) =

∑n
i=1[a

′
igi + aig

′
i]

= −
n

∑

i=1

1

σ3h
3
2

√
2π

[

e−
(ε−|mi|)2

2σ2h (ε− |mi|) + e
− (ε+|mi|)2

2σ2
i (ε+ |mi|)

]

gi +

n
∑

i=1

e−
(ε−|mi|)2

2σ2h + e−
(ε+|mi|)2

2σ2h

σ
√
h
√
2π

[

2ε+ 2
∑

j 6=i

ε2aj

]

.

We now evaluate F ′(ε) at εh such that εh → 0 with εh ≫
√
h, as h → 0. Since again when mi 6= 0 we have

e−
(ε−|mi|)2

2σ2h ≫ e−
(ε+|mi|)2

2σ2h and ε ≪ mi, then

F ′(ε)
√
2π =

∑

i∈{J}

1

σ
√
h
e−

(ε−|mi|)2
2σ2h

[ |mi|
σ2h

gi + 2ε(1 + ε
∑

j 6=i

aj)
]

+
∑

i 6∈{J}

2ε

σ
√
h
e−

ε2

2σ2h

[

− gi
σ2h

+ 2(1 + ε
∑

j 6=i

aj)
]

+ h.o.t.

Note that within gi in (25) we have that the finite sum 1√
2π

∑

j 6=i:j∈{J}
σ

|mj |εe
− (|mj |−ε)2

2σ2h =
∑

j 6=i:j∈{J}
σ

|mj |εujh

= shε
∑

j 6=i:j∈{J}
σ

|mj |pjh is negligible wrt sh ≪ 1√
2π

∑

j 6=i:j 6∈{J} e
− ε2

2σ2h = [(n−NT )I{i∈{J}}+(n−NT−1)I{i 6∈{J}}]sh,

since ε
∑

j 6=i:j∈{J}
pjh

mj

a.s.→ 0. Therefore

gi = ε2 − 4σ√
2π

√
hεsh[(n−NT )I{i∈{J}} + (n−NT − 1)I{i 6∈{J}}]− 2σ2h[NT I{i∈{J}} + (NT + 1)I{i6∈{J}}] + h.o.t..

Further, NT ≪ n and h ≪ ε2, then for all i

gi = ε2 − 4σ√
2π

εsh√
h
+ h.o.t..

Moreover from (27) we reach that
∑

j 6=i aj =
∑

j 6=i,j 6∈{J} 2
sh

σ
√
h
+

∑

j 6=i,j∈{J}
ujh

σ
√
h
+ h.o.t., and again the second

sum is negligible wrt the first one, thus, for all i,

ε
∑

j 6=i

aj = 2
shε

σ
√
h
[(n−NT )I{mi 6=0} + (n−NT − 1)I{mi=0}] + h.o.t. =

2

σ

shε

h
√
h
+ h.o.t..

Now, using (28), from

∑

i∈{J} aigi =
1
σ

√
hsh

∑NT

ℓ=1 pℓh

[

v2h − 2σ2NT + 2σvhsh

(

ε
∑

k 6=ℓ
1

|γk|pkh −2(n−NT )
)

]

+ h.o.t. =

1
σ

√
hsh

∑NT

ℓ=1 pℓh

[

v2h − 4σvhshn

]

+ h.o.t.
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we reach that
∑

i∈{J} ai
gi|mi|
σ2h = 1

σ

√
hsh

∑NT

ℓ=1 pℓh

[

v2h − 4σvhshn

]

|γℓ|
σ2h + h.o.t.

and from
∑

i 6∈{J} aigi = (n−NT )
2
σ

√
hsh

[

v2h − 2σ2(NT + 1) + 2σvhsh

(

ε
∑NT

k=1
1

|γk|pkh − 2(n−NT − 1)
)

]

=

(n−NT )
2
σ

√
hsh

[

v2h − 4σvhshn

]

+ h.o.t.

we reach that
∑

i 6∈{J} ai
giε
σ2h = (n−NT )

2
σ

√
hsh

[

v2h − 4σvhshn

]

ε
σ2h + h.o.t..

Thus

F ′√2π = vh

[

vh − 4σshn
]

[

1

σ

√
h

NT
∑

ℓ=1

uℓh
|γℓ|
σ2h

− (n−NT )
2

σ

√
hsh

ε

σ2h

]

+2ε
(

1 +
2

σ

shε

h
√
h

)(

∑

i∈J

uih

σ
√
h
+

∑

i 6∈J

2sh

σ
√
h

)

+ h.o.t..

If now our sequence εh is such that vh = 4σnsh + h.o.t., and noting that also
∑

j∈J pjh|γj | a.s.→ 0 and that

nε = n
√
hvh = vh√

h
→ +∞ then

F ′(εh)
√
2π = vh · o(nsh)

sh

σ3
√
h

[

NT
∑

ℓ=1

pℓh|γℓ| − 2nε

]

+
2εsh

σ
√
h

(

1 +
2

σ

shε

h
√
h

)

· 2(n−NT ) + h.o.t.

= −2nεvh · o(nsh)
sh

σ3
√
h
+

4nεsh

σ
√
h

(

1 +
2

σ

shε

h
√
h

)

+ h.o.t.

now vh = 4σnsh + o(vh) means also sh = εh
√
h+ o(εh

√
h), and thus shεh

h
√
h
=

ε2h
h + o(

ε2h
h ) → +∞, therefore

F ′(εh)
√
2π = −2ε

ε√
h
· o(nsh)

sh

σ3h
√
h
+

4nεsh

σ
√
h

2

σ

shε

h
√
h
+ h.o.t. =

ε√
h

shε

h
√
h
nsh

8

σ2
(1 + o(1)) + h.o.t. =

8

σ2

(shεh

h
√
h

)2

+ h.o.t..
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