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Abstract

The speed of convergence of the truncated realized covariance to the integrated
covariation between the two Brownian parts of two semimartingales is heavily influ-
enced by the presence of infinite activity jumps with infinite variation. Namely, the
two processes small jumps play a crucial role through their degree of dependence,
other than through their jump activity indices. This theoretical result is established
when the semimartingales are observed discretely on a finite time horizon. The es-
timator in many cases is less efficient than when the model only has finite variation
jumps.

The small jumps of each semimartingale are assumed to be the small jumps of
a Lévy stable process, and to the two stable processes a parametric simple depen-
dence structure is imposed, which allows to range from independence to monotonic
dependence.

The result of this paper is relevant in financial economics, since by the truncated
realized covariance it is possible to separately estimate the common jumps among
assets, which has important implications in risk management and contagion modeling.

Keywords: Brownian correlation coefficient, integrated covariation, co-jumps, Lévy copulas,
threshold estimator.
Jel classification: C13, C14, C58

1 Introduction

We consider two state variables evolving as follows

ax" = aMdt + oVaw + az,

1
X = aPdt + o aw,? +dz, 1 € [0,T] N
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with 7' fixed, where Wt@) = ptWt(l) + 1= hWt(?’); W = (Wt(l))te[o,T] and WG =
(Wt(?’))te[gj] are independent Wiener processes; Z() and Z( are correlated pure jump semi-
martingale (SM) processes. Given discrete equally spaced observations Xt(z_l) , Xt@), i=1.n,

in the interval [0,7], with ¢; = ih,h = %, we are interested in the identification of
the Integrated Covariation I1C = fOT ptagl)at@)dt. It is well known that, as the obser-
vation step h tends to 0, the Realized Covariance > ¢ A XMA;XP | where A, XM =
Xt(zn) —Xt(infz, converges to the global quadratic covariation [X (1), X @] = fOT pio Mo at+
Y o<i<T AZt(l)AZt(Q), where AZt(m) = Zt(m) —Zt(T), containing also the co-jumps AZt(l)AZtm.
It is also well known that the Threshold Realized Covariance, or Truncated Realized Co-
variance,

1C=3  AXVIax0per AX P lia xopen,
i=1

with e.g. r, = A%, and u € (0,1/2), is consistent to IC ([16], [8])'. Further, a CLT
for IC has been established when the jumps processes have finite jump activity (FA), i.e.
only a finite number of jumps can occur, along each path, in each finite time interval (see
[16]), or when the jumps processes have infinite activity (IA) but finite variation (FV),
ie. Y. |AX™| < 0o as., for both m = 1,2 (see [9], Thm 7.4), meaning that the
jump activity of the processes is moderate. Namely, the estimator is asymptotically mixed
Gaussian and converges with speed v/A.

In [16] the estimator has been compared in efficiency with other two known estimators
of IC; it has been used to estimate the sum of the cojumps of X and X® as well as
each single cojump; and it has been studied in the presence of irregular sampling and non
synchronous data; in [4] and in the web appendix of [16] the finite sample performance of
IC has been evaluated on simulated data. Similarly as in [15], IC' tends to zero in the
presence of microstructure noises in the data.

Here we are interested in investigating the speed of convergence of I C in the case where
at least one jump component has infinite variation (iV). This was not known up to now.
We find that the speed crucially depends on the small jumps, namely it is determined not
only by the jump activity indices of the two components X ™) but also on the dependence
degree of their small jumps. In the univariate case the speed found here reduces to the one
in [14].

The optimal speed in estimating /C'is not known when the jumps have infinite variation.
In the univariate case IC becomes the integrated variance IV of X, and in [10] Jacod and
Reiss have shown that, defined the class &'y of the Ito semimartingales X such that a.s.
SUPy< |as| +supycr |02 +sup,cr [ (|7 (w, 2, 5)[" Al)v(de) < A, with r € (1,2] and A € IR,
the quantity p;, = (h/|log h|)*="/?) is the highest possible speed, for any estimator of IV,
to be a uniform bound for the models within &, and the bound is sharp. For a comparison
with the truncated estimator, note that when the model has « stable small jumps (as in
[14]) then (if A is sufficiently large) it belongs to S for any r > «, but not to §%, and
for any such 7 we have p, > (h/|logh|)*=*/2). Now by taking threshold function r(h) =

'For the literature on non parametric inference for the IC' of stochastic processes driven by Brownian
motions plus jumps, see [16].



(h/|log h|)?*, with u € (0,1/2), rather than h*“, then the threshold estimator reaches speed
(h/|log h|)?*(1=2/2) which is the same as p;, as soon as 2u = (1 —r/2)/(1 — a/2) < 1.

In [11] Jacod and Todorov refine an estimator given in [10] and show that its speed is
Vh in the semiparametric class, that we call S¥¢, of the Ito semimartingales X having
« stable-like small jumps, Ito semimartingale volatility ¢ and coefficients with a specified
paths regularity.

Now given an estlmator IV, a possible estimator of IC'is given by IV/(X® 4 X 1)) /2 —
V(X ) /2—TV(X™)/2, thus the best convergence speed of an estimator of IC' is bounded
by pn if the model falls within S and is v/h if the model falls within S¥¢,. The univariate
version of the semiparametric model we are considering in this paper is not necessarily
included in S¥¢,, because we have a general cadlag process 0. However we remark that
the speed of IC we show below: in cases (10) is V'h, so it is optimal and better than Ph,
moreover the asymptotic variance of (IC' —IC')/v/h is the optimal 2 fOT olds, as in the case
of symmetric jumps in [11], but is better than in the case of not symmetric jumps in [11];
in cases (12) the speed of IC' is worse than v/h but is better than p,; while in cases (11)
the speed is worse than both.

Estimation of IC' is of strong interest both in financial econometrics (see e.g. [3]) and
for portfolio risk and hedge funds management ([6]), in particular [X(), X®)] — IC' gives
a tool for measuring the propagation among assets of effects due to important negative or
positive economic events.

An outline of the paper is as follows. In section 2 we illustrate the framework, in section
3 we establish the exact convergence speed when both the Z(™ have IA and at least one has
iV. Namely, we assume that the small jumps of the Z(™ are stable and their dependence
degree can range, in a specified way, from independence to monotonic dependence. The
proofs of Theorems 3.1 and 3.2 are contained in Appendix 1, while Appendix 2 contains
the proofs of the needed auxiliary results which are stated in section 3 and Appendix 1.

2 The framework

Given a filtered probability space (Q, F, (F)icpo7), P), let X1 = (Xt(l))te[o,T] and X® =
(Xt(z))te[oﬂ be two real processes defined by (1) and Xy = (0,0), where

A1. the coefficients c™ = (aﬁm))te[oﬂ, al™ = (agm))te[oﬂ, m = 1,2, and p = (pt)icp,1
are adapted cadlag processes,

A2. form=1,2, 2™ = J) £ M) are jump Ito SMs, with

/ / (w, 2, 8) ™ (w, dz, ds), / / (w, 2, )™ (w, dz, ds),
|v(m) (w,x,s |>1} |y(m) (w,z,s \<1}

where, for each m = 1,2, u(™ is the Poisson random measure counting the jumps of Z(™
and "™ (w, dz, ds) = p"™ (w, dx, ds) — v (dx)ds is its compensated measure (see [9]).

It turns out that J™ are FA jump processes; they account for the rare and large (with
size bigger in absolute value than 1) jumps of X . On the contrary, M have generally
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IA jumps (the path w of M ™ jumps infinitely many times on [0, ¢] iff fg f{w(””(w 2)|<1) V™ (dx)
ds = 00); M™) are compensated sums of very frequent and small jumps.

For each n € IN we observe X, X® discretely and synchronously at times t; = ih.
Since h = T'/n, then h — 0 iff n — oc.

A3. We choose a deterministic function ry, of h, called threshold, satisfying

hlog%

limr, =0, lim =0.

h—0 h—0 Ty,

Denote, for each m = 1,2, by
t t
Dim) :/ agm)ds_i_/ O_gm)dv[/s(m)7 }/t(m) _ ng) _|_Jt(m)
0 0

respectively the Brownian semimartingale part (BSM) of X (™ and the BSM part plus the
FA jump component.

The truncated realized covariance is able to separately capture IC' because it excludes
from 7 A XM A; X @ those increments where jumps bigger than the threshold occurred,
so when h — 0 all the jumps are excluded (see point iii) in the proof of Theorem 1 in [13],
then Lemma A.2 in [5] and Lemma 1 in [13]). However, the remaining jumps, that in
absolute value are below /7, determine, in some cases, the speed of convergence of 1 C.

Notations. Given two (possibly random) sequences U, V,,, we say that U, = Op(V},)
if for any € > 0 there exists a constant n > 0 and an 7n such that for all n > n,
P (|U,| > n|V,|) < e. We write U, ~ V,, when as n — oo we have both U, = Op(V},)
and V,, = Op(U,). When Vn, a.s.V,, # 0 : U, = Op(V,)) means that, for sufficiently large

n, the sequence U, /V,, is bounded in probability (i.e. tight); with a a constant, U,, ~ aV},
means that U, /V, R a, with R denoting convergence in probability; U, << V,, means
that U, /V,, i 0; U, >> V,, means that U, /V, 5 i

3 Main results

We find here the speed of convergence of [ C — IC to 0 when both M (™) # 0 and at least
one of them has iV. We specialize our analysis to the case where the small jumps of each
X are stable, i.e. M™ = L™ — zm)¢ D o<t ALgm)I{lALgmbl}, where L™ are oy,

stable Lévy processes with characteristic triplets (2™, 0, 2™ (dx)), with (™) given below.
Further, we assume that the occurrence of the joint jumps of L) and L(? is characterized
by a Lévy copula C ranging in a given class. We have a,, €]0,2] for each m = 1,2 and
assume without loss of generality (wlg) oy < . Since we are interested in the case where
at least one «,,, > 1, we assume «y > 1. Further, for simplicity, but wlg, we develop our
proofs for the case where the Lévy measure of each L(™ is one sided, i.e. L™ only makes
jumps with positive sizes.



A4. Take ay > 1, and oy € (0, ). With ¢, > 0, m = 1,2, the jumps of each L' have
Lévy measure
VI () = emay ™ I 50y dT .

We denote, for each m = 1,2, by

—Qm

Un () == y(m)([xm, +oof) = cmxg‘ . Ty >0 (2)

the tail integral of the marginal Lévy measure v of the jumps of L. Note that a,, is
the Blumenthal-Getoor index of L™, of M) and of X (™.

In order to describe the joint jumps, we make use of Lévy copulas, because, due to
the stationarity of the Lévy processes increments, the Lévy copulas allow to separate the
time component in the law of a bivariate pure jump Lévy process L from the jump sizes
component and allow to describe the dependence between L) and L(® through only the
dependence of their jump sizes. Lévy copulas were introduced in [18], further studied in
[12] and their properties are well summarized in [6].

A5. For any t the joint jumps occurrence of (Lgl),ng)) s described by the following tail

integrals
U(x1,22) = v, (21, +00) X |29, +00)) = C (U (1), Uz(22))

where C,(u,v) is a Lévy copula of the form
C’y(u7 U) = ’YCL('(% U) + (1 - ’Y)CH(U, U))

where C1 (u,v) = ul{y—oo} + VI{y=cc} @5 the independence copula, C)(u,v) = u A v is the
total positive dependence copula, and ~y ranges in [0, 1].

A5 means that, at any ¢, (L(Y), L(®)) can only have two basically different classes of
jumps: i) the disjoint ones, meaning that L; jumps with size either (0,x2) or (xy,0). This
type of jumps is regulated only by C|; ii) the joint ones, meaning that L; jumps with
size falling into a point (x1,zy) with both z,, # 0. This type of jumps is regulated only
by C), which characterizes a bivariate jump Lévy process L whose marginals L™ are
Lévy and only make joint jumps which are completely positively monotonic, i.e. there
exists a strictly increasing, strictly positive function f: Vs > 0 ,AEgQ) =f (Aﬂgl)). In
fact the sizes (x1,z,) realized by the jumps of L, turn out to be supported by the graph
of f(x1) = Uy *(Uy(z1)), which in our case of one sided a-stable marginals is given by
flar) = ((er02)/ (aren) /2 a2,

Our assumption that L has Lévy measure v, means that its jumps on the set given by
the union of the graph of f and the positive sides of the Cartesian axes. Each marginal p(™
counts the projection on axis x,, of all the realized jumps of L. However when a realized
jump x; is so that there exists a realized x5 such that xo = f(x1) then z; is interpreted
as the first component of a joint jump. Any other types of jump of L(!) are interpreted
as being associated to a zero complementary component, i.e. as being the projection of
a disjoint jump (and analogously for L®). By changing v we keep the same marginals
L™ and the same joint or disjoint jumps, but we change the weight given to the different



classes of jumps by the underlying probability measure. Process L has joint Lévy measure
v|([x1,400) X [22,400)) = I(s, 202203V ([21 V f7H(22), +00)), so the v, defined by A5 is
equivalently writable as v, ([z1, +00) X [72,+00)) =

7[{$2=0}V(1)([x1? +OO)) +7[{l‘1=0}’/(2)([w2? +OO)) +(1_7)1{5217&0@27’50}”(1)([xlvf71($2)> +OO))
(3)
Remarks. i) A5 is equivalently expressed by:
L — p/m) 4 E(m), m=1,2,

where L'™ has triplet (2'™ 0,90 (dx)), m = 1,2, LY has (2,0, (1 — v)vW(dz)),
(L'D, L' LMY are independent while, as said, ALY = f(AL(gl)). In particular A5 is
satisfied when the bivariate jumps Z follow a factor model

ZzW0 =y 22 = qv®@ 4 py )

with V), V) independent pure jump Lévy processes, and a,b € R: L = (VM bV () and
f(x) = bx.

ii) Note that in our framework the two components of L have the same number of jumps,
however they can have different jump indices «,,. In a model with ALP = f (At[}(l)) but
f(z) # bx, LW could make jumps much smaller than L®), implying &; < @,. When instead
f(x) = bx then the two L™ have the same jump activity index.

The processes we chose to deal with are quite representative since in fact many com-
monly used models in finance (Variance Gamma model, CGMY model, NIG model, etc.)
have Lévy measures related to the ones in assumption A4, in the sense that they are tem-
pered stable processes where the order of magnitude of the tail integrals as z,, — 0 is as
in (2). Moreover C., allows to range from a framework of independent jumps components
to a framework where the components are completely positively monotonic.

The speed of convergence of I C—IC is strictly related to the speed of convergence
to zero of the sum of the small co-increments AiM(l)[|AiM(1)|§ﬁAiM(2)I|AiM(2>|§\/ﬁ (as
it happened in [14] for the univariate case), which substantially behaves like the sum of
the small co-jumps > AMS(I)I|AM§1>|§ﬁAM§2) I|AM§2)|§\/E (

expectation is Tf0<z vy zyv,(dz, dy). Note that, as soon as € < 1, in restriction to the

see [2], Lemma 5), whose

set of jump sizes (0, ¢] x (0, ¢], the jumps of the bivariate processes M and L coincide. We
need assumption A5 in order to control the speed of convergence to zero of integrals like

fogx,ygs b y™ v, (dzx, dy), for £ > 0 and integers k, m.

In our main Theorem (Theorem 3.2) we are going to show that

n n ti L
O _ ~ . (1) (1) (2) (2)
IC - 1IC \/EUh + ; 51 + ; /t;_l O dWs /ti_l O dWS [{Zse]ti—l,ti] I{IAMS(Q)D\/W}ZH,
(4)

where

& =& = AMYAM®,

and for m = 1,2

(m) (m m
M = M =N AMLT L av)5e) = / /0<x<5} )(dz,ds) —t /{KN}M( ) (da),

s<t



and Uy is a sequence of rvs converging stably in law to a mixed Gaussian rv. So we
preliminarily state the following crucial result, which deals with the asymptotic behavior

Of Z?:l &

Theorem 3.1. Assume 0 < oy <ap <2, a0 >1,0<¢c; <, 6=/, =h", u € (0,%).
As h — 0 we have

i) if v € [0,1), then for any choice of a1, as and u as in the assumptions:

Zgz ~ nE 61 ( )O(l 1) _a2[{a1>a2u}U{a1:a2u,a2>l} + ThCA1CA2F0<E)7

where Fo(ﬁ) = _517a2]{a1<a2u a2>1}+10g l]{oz1<0c2u as=1}; C(ku m) = cQ(gi?) o % >
0, for k,m > 0; and, form =1,2, ca,, 1& am#1 F Cmla,,=1;
ii) if v = 1 but (a1, 0) # (1, 1) and: if {01 < 1 02 > 1} U{ar = 1 < as} we take

u € (m, 2); while if {1 < ay < as} we take u € ( 1); then we have

a+a72

ZSZ ~ nE[&] &~ Thea,ca, Fi(e),

where F1(g) = —e' 7114, cicapy +10g L, c1many — €' 702 log 21 0, m1<any +108% 20y —aymiy+
+e27M 72 1 0 <an)s
ii) if v = a1 = as =1, for any u € (0,3): with Cp, (k) =

C —
=, for k,m =1,2, we have

S "6~ Var(@) Uy = VheVTCL(2)Co(2) U

Remarks. i) Since ¢4, > 0 for o, < 1 while ¢y4,, > 0 for o, > 1 and within F we always
have oy < 1, then we always have c4,ca,Fi(e) >0, i =0, 1.

ii) As for ii) above, if either ay < 1 or a; = 1 < a then we have a; < a5 and requiring
that u > 1/(2 + ay — «y) is possible because 1/(2 + as — a3) < 1/2. On the contrary,
the set {1 < oy < s} contains the case a3 = ag in which u > 1/(2+ay —ay) = 1/2is
not admissible. Note that condition u > 1/(2 + ag — ay) implies u > 1/(ay + a2) when
g > g > 1.

iii) The speed of convergence of ) . &; is determined not only by each oy, a but also by
the degree v of dependence of the two small jumps components of Z.

iv) We have that > 7 | & tends to zero much faster when v = 1 than when v € [0,1)
(we obtain that by using Proposition 4.4 and comparing nE[& ] in (30) with nE[&] or
vnVar(&) in (31), while matching all the sets of (ay, as)). In other words, the speed at
which the sum of the co-increments &; tends to zero is much faster when MM, M) are
independent, in fact & is led by the small co-jumps and in the independent case the sum
of the small co-jumps is zero (rather than being small).

v) Comparing the speed of 3. & with VA, we reach that >, & << v/h substantially
when «; is sufficiently small (and still ap > 1). In this case the co-increments of M), M (2)
are negligible with respect to (wrt) the Browinan co-increments. More precisely, using
Proposition 4.4, Theorem 3.1 and (36) in Appendix 2, defined
1+ 2u(2 — ay) 1

> —>1
2u 2u ’

x Qo %
- € (2u, 1), -
“ asu —u—+1/2 (2u,1), -




we reach (see the proof in Appendix 2) that:
ifye[0,1): 3,& << Vh iff oy <af; (5)
if y=1: S&<<Vh o iff ay <o

Since o] < 1 < aj*, the above result means that when the two small jumps components

M) are independent, then the impact of their co-increments on the convergence speed of

IC—IC'is negligible, wrt the impact /A of the Browinan co-increments, for a wider range

of values «;. O
Here is the main result of our paper.

Theorem 3.2. If p £ 0 and p,c"™, m = 1,2, are s.t. when h — 0,
Vs>t: s—t<h, then B[jo/™ — o™ < K(s—t), m=1,2, (6)

with 0 < o <aps <2, a0 >1,0<¢; <9, 6=/, =h" u>0 such that

1 1 .
V —= if ap < ap
2 _ _o3
1/2>u>{ +as Oéll 3—=

ifOél = (9

then, as h — 0, we have

10— IC ~ \/_Uh+2§+ /t“dW” cPdW A I s

1 ti—1

(8)

ettt an® sy =

~ VR4 (1 =) T2 4 peen 9)
~ Vh f{a2€[1 Ly =1y + Ipefony,an<at] (10)
+e T [ep, 1)}[I{a f<ar<aze[l, k) }+I{a22ﬁ}l{a2=a1}u{a1<a2<a1(%—1)}i| (11)
T he™™ I, 1y [I{vzl} + f{ve[m)}f{al5ga2}u{a1(%_nga2<a15}} : (12)

Remarks on the last result.

i) Condition as < a;(1/u—1) is equivalent to u < ay /(a2 + 1) and we did not include
it among the ones in (7) because such conditions are required for the convergence of some
terms of I (defined within the proof of the Theorem) in IC' — IC, while ay /(s + o) is
only a separator to establish whether the leading term is e!T®2/®1=%2 or he=®2_ There is
another proof for the convergence of some of the cited terms of I, which avoids conditions
(7), but it is much longer than the one given in Appendix 1.

ii) Note that aq(1/u — 1) < ay implies oy < ag; a1(1/u — 1) > o implies aou < ay. If
ay < ag, (7) implies that v > 1/4.

iii) Similarly as for > " | &, the convergence speed of IC — IC depends both on the
jump activity indices aq,as and on the dependence degree v of the small jumps. This
implies that [ C contains information that we could exploit to estimate such a dependence
degree.

Note that when the dependence degree increases (v decreases) then the leading term of

>, & also increases (Y, E[¢] increases and y/nVar(&) << Y, E[&]), and the estimation

8



error /C' — IC' increases. An higher leading term of ), § means that the average weight
of the small jumps is higher so that the disturbing noise when estimating the Brownian
feature /C is higher. That is: the higher the dependence degree, the higher the disturbing
noise.

iv) Basically, when u is close to 1/2 (i.e. satisfying conditions (7)), if the small jumps
are dependent (y € [0,1)), the speed is: vh when ay,ay are small (ie a; < of and
s < 1/(2u); note that when ay < 1/(2u) then oy < af*); e'+22/@1=92 if either the indices
have intermediate values (i.e. af < a3 < as < 1/(2u)) or they assume the largest possible
values and either they coincide or they are close (i.e. either a; = ag > 1/(2u) or oy < ay <
a1 (1/u — 1) with still ap > 5-); he™® when as is large and the indices are very different
(i.e. ag > 1/(2u) and either 20qy < ay/u < g or ay < a;(1/u—1) < ay < aq/u).

If the small jumps are independent (y = 1), then the speed is: V& if ap < 1/(2u); he =2
if g > 1/(2u).

iv) For v = 0 or v € (0,1) we have the same cases: in the presence of the parallel
component, the independent component does not modify the speed of convergence. On
the contrary, in the presence of the independent component, the parallel component does
worsen the speed of convergence.

v) When the leading term of 3.7 | & is y/nVar(€;) ~ Vhe?~o1/2az2/2 <by Proposition
4.4, e.g. in the case 7y = ay = ap = l; orin the case y = 1 and 1 < a1 < ay < 1/(2u),
since then u < 1/(2as) < 1/(aq + an) ) it holds that \/nVar(&)/vVh — 0,50 S, & is

dominated by VA and the term /he2=®1/2-92/2 pever appears.

vii) The speed is v/h even in some cases with ay > 1 (but ay < 1/(2u)): any ay is, if
v = 1; for oy sufficiently small (ay < «f) if the parallel component is present. In this case
we also have a CLT (see below) and in the univariate case the truncated estimator turns
out to be efficient.

viii) When a1 = ap = o > 1 but the two jump components are not necessarily com-
pletely monotonic, we reach the following speeds of convergence to zero of IC — IC:
(1 —7y)e*ify €[0,1); Vhif y =1 and o < 1/(2u) (note that o < of < 1 < ay is
not in our assumptions); he * if y =1 and a > 1/(2u).

ix) The univariate case is when a; = a9 and v = 0, and the speed turns out to be
g2 = T,ll_a/z, for any a > 1, consistently with [14], where, when a > 1, the estimation
error IV — IV for the is led by the IA and iV jump part.

x) For fixed h, the convergence speed is a function s(7, a1, as, u) of our parameters. Such
a function is smooth most of the times, however it has some singularities (as is evident in
Figure 1; see the details in Appendix 2).

xi) The speed in the worst case scenario is approached when v € [0,1). Since it is
the same for v € (0,1) or v = 0, let us take v = 0. For fixed h and u, define R the
region identified by the initial assumptions on «aq, s and by (7) and A, B, C' the subregions
identified respectively in (10), (11) and (12):

R={(a1,as) a1 € (0,2), 0 € [1,2), 01 < as}N

1 1 1
({Oq < (g, Y & < u}U{a = as, 3@ < u}),

2—|'042—Oz1 3_7 B




Figure 1: Graph of s(0,aq,as,u) on R, for fixed h = 1/1000 and u = 0.495, from two
different points of view, and region R (black). as varies within the axes with range [1,2],
oy varies within the one with range [0,2]

1 1
A:RQ{OQSOZT,O[2<%},B:BlLJBQUB:;,Bl:Rﬂ{Oél>C¥I,a2<%},

1 1 1
By = RN{a; = ag,ap > ﬂ},B?):Rﬂ{al < g, 09 > 2 D) <041(E—1)}7

1 1
C=RnN {OZQ > %} N ({Ozl < OéQU}U {OZQU < oap < g, Qg > al(a — 1)})

Then, noting that 1/(3 — a2/2) < u iff as < 2(3 — 1/u), the slowest convergence is ap-
proached by

1+ o 1_ —
sup  s(0,a1,a0,u) = sup s= sup s = sup g a7 = (252 — p2du

(a1,02)ER AUBUC B1UBs ar=az,1<ae<2(3—1/u)

note that h2~%* >> v/h, and the closer is u to 1/2 the slower is the convergence of I C.

Remark. When oy < 1/(2u) and either v =1 or both y € [0,1) and {ay < a7}, we have
a CLT for IC — IC. In fact the only leading term of IC' — IC' is v/h, which only comes
from the components Y™ of the processes X (™. so the presence of M and M® is not

influential. Thus using also Theorem 3.4 in [16] and Theorem 4.2 in [7], with =% denoting
stable convergence in law, we have

c—1Ic
ViV AVar
where N is a standard Gaussian r.v. and AVar = h'=2 27 Himzl(AiX(m))2I{\AiX(m>\§\/ﬁ}

_ n—1 1 1
—h 3 T A XV a s x0<ymy Tjco Di X P T a,, xe)< s
P T 1 2
S Jy 1+ g2 (o) (o2t O

t
S ./\/—7
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4 Appendix 1

This appendix contains the proofs of Theorems 3.1 and 3.2 and the statements of the
necessary tools. We begin with giving the tools to prove Theorem 3.1.

Remark 4.1. Note that when k,m > 1 the integral f0<$ y<e 2®y™v, (dx, dy) is zero, because
the independent components of L have no common jumps. It follows that under assumption
A5, for both k > 1 and m > 1, we have

/0< . by v, (da, dy) = (1 —7>/ 2"y dC)(Ui(x), Us(y)).

0<z,y<e

From the definition of Lebesgue integral and simple computations the following holds true.

1
Lemma 4.2. i) Given the expression of C| and (2), for ay < a,0 < ¢; < ¢, ife <e o1

1

1 1
then for any Borel functions g s.t. g ((a”‘) “ <%> az) 15 Lebesque-integrable we have

C1 Cc2

+oo 1 1
a1U\ " a QU “ay
/ g(x1, 22)v)(dx1, dzo) = / 9 (( ) P < ) 2> "
O rase T €1 C2

it) for m, k > 1 note that aﬁl + O% — 1> 0, and in particular we have

/ vy (day, day) = O(k, m)emﬂc%*m;
0<z1,22<¢
iii) for £,k > 2 and m = 1,2 we have:

/ wyvy (dey, day) = / xﬁly(m)(dxm) = Oy (k)ehom:
0<xm<e 0<zm <e
fork,m=1,2
/ ‘IllcVH (dxla d$2) == C(k, O)E%k_(m; / l’gl/”(dxb d,’EQ) = 0(07 6)5é_a2;
O0sw1,z2se 0<a1,22<e

i) form=1,2

1
A; - / ZL’mV(m)(dxm) =ca, [(1 _ 81_am)[am¢1 —+ Iamzl In —] . ]
e<z,<1 €

Kk
Recall that for k,m > 0, C(k,m) = C2<a201)01+ > 0, and for k,m = 1,2,

«
aica m+07§k*042

Cn(k) = 22— and ca,, = 7221, 21 + Cmla,=1.

k—aum 1—ap, ~@m

Note that for € < 1, cy4,, (1 —e'=*) > 0 for any «,, €]0,2[ and that C(0,m) = —2— =

m—aoo
C5(m). The reason why f0<$1 e z¥v)(dzy, dzs) depends also on s is that the jump sizes of

the parallel component of M are connected by x5 = f(x1). If ¢y < ag and 0 < ¢ < ¢y then

11



for sufficiently small ¢ we have U;(¢) < Us(g), thus e > Uy ' (Uy(e )) = f7!(e). Tt follows
that by binding both z; < e and xy = f(z1) < & we impose that z; < f~1(e) Ae = f~1(e),
which is a bound depending on as.
Define
;o &= Bl
' nVar(&)
We know that Y 7, & is always a tight sequence, since &; are iid and thus nVar(&) is

the L? norm of the centered Y (& — F[&]). In the next theorem (which is proved in
Appendix 2) we compute more explicitly the leading terms of nE[¢;] and y/nVar(&).

Theorem 4.3. Assume A2-A5, 0 < a1 < ap < 2,090 > 1,0 < 1 < ¢o. Take e = h", any
u €)0, 1] and define

14 2u—+/—42ay — Nu2 +4u+1
Ty = \/ ( 2; ) c (OZQU,OZQ).

Then as € — 0 the following quotients are tight:
i)if vy € (0,1):

z gz ( )0(1 1) o1 2]{a1>a2u}u{o¢1 asu,a0>1}F T ThCAchQFO(g) (13)
VTet-a2/2y a1y Cy(2)C(0. D) <y + 2201 (1~ 1O 2) o0,y
i) If y = 1:
Zi éz - ThCA1 CA,y Fl(g)
) (14)
VTV he?-e1/2=02/2, /C(2)Co(2)

i) If v = 0: with G = C(2,2) — 2¢4,C(1,2) + ¢%,C(0,2) we have

Zi & — TC<1 1) I{a1>a2U}U{a1 =agu,a2>1} T ThcAch?FO(e) (15)

ﬁgl—o@/Q \/h2c?410(0, 2>I{a1<a2u} + 5207? [0(2, 2)[{a1>a2u} —+ G]{al:aw}

Remarks on the Theorem statement.

e The term —4(2a5 — 1)u* + 4u + 1 within z, turns out to be strictly positive for all
u € (0, %), a9 < 2. Also, for any aq, as as in the assumptions we have 1+ z—f —ap > 0.

e The numerator in each quotient is always the difference of )" ¢ with the leading
terms of its (tending to zero) mean. There are parameters choices such that E[) ", &]
(or v/nVar(&)) has two asymptotically equivalent leading terms.

e As for the denominator in i), the case ay = « falls within the region oy > x,.

12



Proposition 4.4. (See the proof in Appendiz 2) Assume 0 < oy < as < 2, ag > 1,

0<ecr <, ue(0,3). As h— 0 we have —”ZZ[Z(}&) — 0 in the following cases:

i) for v €10,1): for any choices of a1, as and u, as in the assumptions;
i) fory=1:0on{a <10y > 1} U{an =1 < aa} iff u € (zg=ars 3); on {1 < au < o}
iff u € (al_lmz, 3).

We have ynVar(&)

nkéi]
ii) fory=1: on{oy = as =1}, any u € (0, 3).

— +00 in the following case:

Remark 4.5. When —%(Z(]&) — 0 then the tightness of > ., éz implies that %@j ER 1,

that is > | & ~ nE[&]. Otherwise, i yrVerl&) 00, the tightness of 31, & only allows

nk[¢
us to say that Vn > 0 K, : with probabz'lz’tyl larger than 1 — n, for all sufficiently large n

we have | Y1, &| < Ky\/nVar(€), but Y27, & could tend to 0 faster than \/nVar(&)).
However the following CLT (which is proved in Appendiz 2) gives us the exact asymptotic

behavior of > 7", &.

Theorem 4.6. When v =1 = a1 = as: ¥V u € (0, %), with % denoting convergence in
distribution, we have

Z?zl & — nE[&] i>./\f
nVar(&) .

Remark. A CLT for ! | & also holds in the case of completely dependent small jumps,
i.e. v =0 (see [7], Thm 4.4).

Proof of Theorem 3.1. This is a direct consequence of Theorem 4.3, Proposition 4.4,
Remark 4.5 and Theorem 4.6. O

We now proceed to prove Theorem 3.2. Recall that under A1 we have the property (point
iii) within the proof of Theorem 1 in [13]) that a.s.

|A; D™
sup

lsjsn /2hlog%

where K, = supge(o 7y |als + SupPseo 1 [o]s + 1 are finite random variables.

By using a localization procedure similar to the one in [9] (sec. 3.6.3) we can assume
wlg that the coefficients a™, o™ p in (1) are bounded. In particular, we can take K, to
be constants.

In the following denote, for m = 1, 2,

< Kp(w) <oo, m=1,2, (16)

_am

(m) _ Vo _ 7 _ _
N =D Lgaximisny M= D Laximps gy Ve = 2 Langms ey O = b

s<t s<t s<t

K is a mute name for any positive constants: it keeps the same name passing from one
side to the other of an inequality/equality, even when the constant changes. For U a rv,
we denote ||U||, = E*[|U]Y.
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Remark 4.7. 1. (Lemma 2 in [1]: note that the expansion (24) and the estimate (50),
on which the proofis based, hold for any stable process and any stability indez in (0,2),
thanks to (2.4.6), (2.4.8) in the cited book of Zolotarev and to the expansion of p°(1, x)

at page 89 in [17]) If L is a symmetric stable process with N, = D <t AIN)I{|AE8|>E}
and Lévy density F(dx) = E |1+a —¢dx, if 0 = he™®, then:

P{‘Aii— S AL sz >g}+P{\AiZ|>5,Aiﬁ:0}+P{|Ai£yge,AiJffzug Ko%

s€Jt;—1,ti]

2. ([6], ch.3, Prop. 3.7) For any Lévy process V with Lévy measure v, then ) _, Ifav,|><}
is a Poisson process with parameter tv{|x| > e} = tU(e), where U(x) gives the tail
of the jumps sizes measure; it follows that if v(dz) = a|lx| 17 [,cq + b~ %I~ with
a,b >0 and (a,b) # (0,0), then with p € (0,1) : P{Zse]ti,l,ti] Ifav,sey = 1} ~ 0,

P{Y " Igavigse =2}~ 0, PLY " Ijavieca-pay = 13~ 0((1—p)* = 1).
SEJti—1,ti] s€Jti—1,t4] O
Let us recall that each M (™ is given by the small jumps of a one-sided stable process L.

Lemma 4.8. (See the proof in Appendiz 2). Let L be a one-sided a-stable process with
characteristic triplet (2,0, ¢-Ipzoyx™'"%dx), let Hy = (Ly—zt)y, takee = (h) s.t. h/e(h) —
0, any constant p € (0,1) s.t. p > |z|h/e and any q € (0,1 —p). For m = 1,2, i = 1..n we
have the following.

1. P{AN 0, (AM)2 >} < K2 P(IAM™)] > K\ /i) < Kb,

2. P{AL > €3 Ifar.se = 0} < KO3 + KO(g~ — 1).

SE i— 1t]
3. P{AM™]| > \/r(1 = p), AV = 0} < K0il® + Kb, (g o — 1).
4' P{‘AlHly < €<1 +p): Zse]ti,l,ti] [{|AH15|>€} = 1} < K[é4/3 + é(l — (1 + 2p)_a)]

P{ALI < €, e,y 0 Tiasasey = 1} < K02 +6(1 = (14 2p) ™).

5. With e = /i, we have P{|AM™| < /(14 p), AV > 1} < KO3 + K6,,(1 —
(1+2p)=m).

Lemma 4.9. (See the proof in Appendiz 2). Let, for i=1..n, A; C Q be independent on
WO and W® and s.t. Vi, P(4;) < 0,,. If each o\ satisfy (6), then
i) e [ ePawP L, ~ Y o) AW AW

ii) Any P(A;) is, we have E[>, Jf}leiW(l)algfjlAiW(Q)IAZ,|] < KP(4A;).
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Lemma 4.10. (See the proof in Appendiz 2) With Y denoting convergence in probability
uniformly on [0,T] and ICy = fot p50£1)0§2)ds, we have

[t/h] .. "
1 i i we m
- Z/ Ugl)dWS(l)/ @AW I 5 sy % 2—[@.
moi—q Jti-1 ti—1 m

Lemma 4.11. (See the proof in Appendiz 2) We have

[t/h]

1 1 2 uc C1

(9_1 Z U7f(i—)1AiW(l)O_é‘—)lAiW(Q)[{AiV(l)ZLAiV@)Zl} = (1 N ’y)a—lICt ' ]{’76[071)}'
=1

Proof of Theorem 3.2. From now on take a p € (0,1), h sufficiently small and s.t.

p > @/hln%/\/ﬁ, q € (0,1 —p). We can write

4
IC—1C =Y 1, (17)

k=1
where

L= [Z AY DAY P yn iy <o ymylyayei<oygmy — 1C],

i=1

L=} AYWAY® <I{|A1X“>Ism}f{miwwm - f{\Amw\szm}f{miwnszﬁ})’
i=1
I3 = Z(AlY(I)AlM@) —|— AlY(2)A1M(1))I{|A1X(1)|§\/H}I{|AZX(2)|§\/H}7

i=1

I4 == ZAZM(l)AlM@)IﬂAqu)|§W}I{|A1X(2)|§\/ﬁ}

i=1
We know that I;/vh =% U, with U mixed Gaussian rv ([16]). We are now going to show
that:

&2

n t; t;
Iy ~ Z/t 1 ggl)dws(l)/t 0§2)dW§2)]{|Aif/<2J|21} ~Oy=hr T, I <<V
i=1 i i—1

and I, is the sum of Y 7 | & with some other terms which however are negligible wrt one of
the terms v/h, 6, or > &. That will prove (8). It then turns out that none of the terms
appearing in (8) is always negligible, while depending on the combination of the parameters
7, a1, as the leading term is different, and we show (10, 11, 12).

Let us start dealing with I, = Iy + J, where

Ly =) AYONY O A )< ax® < rmin{las @ <2y Ay @] <2 me:

=1
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J== AYWAY® <[{|Aix<1>|s¢maix<2>|s\/ﬁ}cm{miy<1)\§2\/ﬁ,mm2)\§2ﬁ}-

i=1
We first show that I; << 6. In fact, for each i, on the set highlighted by the in-
dicator we have |A;Y™| > 2./, for at least one m € {1,2}, and, using (16), we
have |A;J™| + Ky/hlnj > |AD™ + A JM| = |AY™]| > 2,/rp, which implies
that [AJ™| > 2./m(1 — p), thus |A;J™] £ 0. However |A;X™| < /r, and so
|A; T+ A M| — A, D™ < |A; X </, implies on one hand that [A;J™) +
AMM™| < \/_ (1+p), and on the other hand that considering a sufficiently small h, that
1— |AMM™| < |AT™] — [AM™] < |A T —i—AM )| < /r(1 + p), and thus, for
sufficiently small o, |A;M ™| > 1 — /r,(1+p) > /ry. It follows that Vi = 1..n there is an
index m; s.t. {|AXWO] </, [AXE] < ik 0 {AY W] <2/, |AY ] <2/} C
{AN™D) £ 0, A M > V/Th}, thus, using Lemma 4.8 point 1, P {1;_21 #+ O} <3 P{
AN 0, A MO > (/7y} < K — 0, which implies that 22— 0.

As for term J, on {|A;Y (™ |<2\/_}W6have |A; Jm)|—|AD(m | < |AY |<2\/_
and thus [A;J™| < 2,/r,(1+p) < 1, which implies that A;J™ = 0,i.e. A; Y™ = A, D"
Thus, calling

B = {|AX W] < i, |AX D] < b n{]AY Y] < 2y, [AYP] < 2¢/m ),
we have J = >1 A YWA Y5 = Zizz Iy, where

n ti t; n L L
Ly=Y / oD ds / Dds I, Ly=3 / W) / OO [
i=1 Y ti—1 ti—1 i=1 Jti—1 ti1

n t; t; t; t;
]2’3_2(/ agz)ds/ Ugl)dws(l)+/ agl)ds/ 0§2)dW£2)>IBy
i=1 ti—1 ti—1 ti—1 ti—1

7

We show that I, 4 is the leading term and it asymptotically behaves as 65. As for I5,, by
the boundedness of each a™ we have E[M] < i — 0.

As for I3, notethat on {]A X M| > \/_h, |A; T | = 0} we have [A;M™|+K/hln+ >
K\ /hln}ll > \/ﬁ(l — p). Using also Lemma 4.8 point 1 and noting that 6; < 65, it follows
that

”23' Zh,/hln <P{]AM | > KV} + PUAM®| > Kym}) < K hln%,

2

which tends to 0.
As for Iy 4, firstly we show that

n

I 1 § o1 1 ; 2 2
-1 i—1
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where B,, ~ 61 /605(1 — 7). Let us begin showing that

I
o Z/ o / VWD s xoieymisx@icymye s (19)

2

as argued just after the expression of Iy, {|A;Y ™| > 2,/r,} C {A;N™ #£ 0}, thus

1 <& ti L
9_22/ ”gl)dwil)/ Ug)dWS(Q)‘[{AiXmHs\/mm1,2}8ﬂ{|AiY<m>ls2\/ﬁ7m1»2}C§
i—=1 1Jti-1 ti—1
1 n t; t;
1 1 2 2
9—22 / oMaw® / P AW (Ianmzoy + Tianeiz0)) (20)
i=1 ti—1 ti—1
t; 1 1) rts 2 2
S eawd [ o )}I{Ammy&o} Kgs 1
92 S Q_ZZhln E]{AiN(m)fo}
i=1
hln

has expectation bounded by K —-t = g2 In 3 — 0, thus (19) follows. Since now [(anp)- =
Tae + Ige — Igenpe, (19) coincides with

1 n ti ti
0—22/ O-Lgl)dWs(l)/ O-Lg2)dWs(2)|:I{\AzX(l)|>\/ﬁ+‘[{|AzX(2)|>\/ﬁ}_I{‘AZX(1>‘>ﬁ,|AzX(2)‘>\/ﬁ}:|
ti—1 ti—1

i=1
(21)
We now show that

RN b 6,
B, = 7 2/ Ugl)dWs,(l)/ O-§2)dWs(2)I{|A¢X(1)\>\/ﬁ,|AiX(2)|>\/ﬁ} ~ 9—2(1 -7 (22)
i=1 Y ti—1 li—1

the left term is asymptotically equivalent to

0 4 Z / Jaw Y / o P AW DI 5 w51 4a,0051)] (23)
ti—1

because

1 n t; t;
9—2 § / a§1>dW,§”/ 0§2)dWs(2) (1{\AiX<1>\>\/ﬁ,|A¢X(2)\>\/ﬁ} - I{Aﬂﬂl)zl,AiV(?)zl}) -
i=1 Y ti—-1 ti—1

1 2 2
92 Z/ dW( )/ g )dWs( )<I{|AiX(m)|>\/ﬁ,m:1,2,but A; V(O =0for at least one index ¢;}
1
(24)
_I{Aif/(m)zl,mzl,zbut |A; X (O)<, frpfor at least one index Ei}> :

On {|A; X ) V&) = 0} either A;J%) #£ 0 or A;J%) = 0. In this last case, as
above (18), |A;,M®)| > /(1 — p); further also on {A; V) > 1, |A; X )| < /r}, either
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JW) £ 0 or A;J%) =0, and in this last case we have |A; M) = |A; X — A, D] <
|AX &) Th(1+y/hIn/\/ry) < /rr(1+ A7), with 0 <7 < 1/2 —u. Thus

the factors within brackets in (24) are

I{|A1-M(‘i)|>\/ﬁ(1—p),Ai\~/(‘i):O,AiJ(‘i):O} - [{|AiX(‘i)|S\/E,AiV(‘Zi>:0,AiJ(‘3i>:0,\AiM“i)\>\/ﬁ(1—p)}+
I{|A,L-X("i)|>\/ﬁ,Ai\~/(£i):0,AiJ(£i)7ﬁ0} + I{|A,L-M(£z‘)|§\/ﬁ(1+h’7),Ai\~/<"i)21,AiJ<‘fi):0}
_[{‘Aix(zi)‘>\/ﬁu|AiM([i>|§\/ﬁ(1+hn)aAi‘~/(zi)ZlaAiJ(Zi)ZO} + [{AiX(zi)|§\/ﬁvAif/(€i)ZLAiJ(Zi)#O}.( )
25
Firstly, as for (20), the third and sixth terms are negligible. As for the fifth term, since
{AXE)| > /r} and A JE) =0, we have A; M) > /r,(1 — p), which leads to /75, (1 —
p) < |A;ME) 7n(1+ h"). However, by Lemma 6 in [1], we have

P{(1—p)h* < |AM™] < h¥(14+hm")} < KR 6 = n Aaguu A (1 — g — 217) > 0.

Applying the Holder inequality with conjugate exponents si, 5 > 1 to the fifth term we
reach

1 n

n 51 _ )| < n .
< thP {\/E(l p) < |A5M ‘ = \/r_h(l +h )} < Kh(17a2u+¢)gf(lfa2u)7
2

t; t;
1) (1) (2) (2) _
/ oy dW o, dW I{|A¢X(‘i)|>\/ﬁ,\AiM(“i>\g\/ﬁ(1+h7i),AiV(‘i)zl,AiJ(‘i)zo}
ti—1 ti—1

which, for sy properly chosen close to 1, tends to 0, since (1 — agu + ¢) > 1 — asu.

As for the second term in (25), we have that on {|A; (1l —
p)} either (1 —|— k"), which leads to A;J%) # 0 and thus to a negligible
term, or \/75,(1 — ) < |A; M )| < /fr(1+ A7), which also leads, by the same reasoning as
just above, to a negligible term.

Finally, using again the negligibility of % Yoy | j;t_l oaw f:_l o Paw® a0t 20y

as for the first and fourth terms in (25) we have

n (bt (1) (1) rts _(2) (2)
fti_qs AW fti_qs dW s
2 6, (Fusonreors yra-p avemopoganse e s o ez a0

i1

n [ oMaw
~ u (Q)dW I ~ ~
0, . (1AM D>/ (1-p), AV ED =0Yu{ AV ED >1,| Ay M D | < /7y (1407}

=1 i—1
1 (1) (1) (2 @)
~ 6’_2 Z Uz‘—lAiW UZ‘—1A1W (I{\A MU |> /r, (1-p),A; V&) =0YUu{A; VD) >1,| A, ML )|<\/ﬁ(1+h")>
i=1

and Writing ERE, |nz|] = [Z?Zl E;_1|n;|], using the independence, the Holder inequality
for E[|a A, W(l)a AW @] Lemma 4.8 points 3 and 5, and recalling that 6; < 65,
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then Vp € (0,1), p > A" > y/hln %/\/ﬁ, Vg € (0,1 — p) the expectation of the sum of the

absolute values of the terms in the previous display is dominated by

Kh (Pea®
=1

2

(1 —|—p)}>

4
(63 +6>(q" ™ —1) + 051 — (1 +2p)~*2))
02
However if we take p — 0 and ¢ — 1 we reach that the limit in probability of (24) is 0 and

(23) is asymptotically equivalent to (22).
Now, by Lemma 4.9 and Lemma 4.11, (23) has the same rate as

<K — K(¢ ™ — (1+2p)™*™).

1 - (2 91
9_2 Z Tt 1A wt )1AiW(z)I{mif/(l)|21,|Ai\7(2>|21}] ~ 9_2(1 =),
0 (22) is shown, and, by (21), also (18) is true.

Now, by reasoning exactly as for (23) we have

t;
1 2 2
0y Z/ Vs /t o P AW [ a x ) iy ~
i—1

1 n ti ti
0—22/ agl)dWégl)/ Uf)de)I{AiV(m)gl}»
i—1 ti—1 ti—1

which, by Lemma 4.10, is asymptotically equivalent to %—T;. In particular

Ig 4 91 C1 Co 91 C1

0 02 ay - 05 92( 7) aq

if a; < ay we deduce that Iy ~ Ir4 ~ 6y, while if a1 = ay = «a, then Ir,/0> ~ ¢1/a +

cafa— (1 —7)er /o = (eq + 7ye1) /e, which is always non zero because v > 0 and ¢, > 0.
We now show that I3 in (17) is negligible wrt Vh. Here we adjust to the bivariate

case the proof given in [5] for the univariate case. I3/v/h is the sum of two terms of type

\/LE E?:l Aly(m)AlM(z)IﬂAZX(l)|§ﬁ} I{\AiX@)\S\/ﬁ} with (m, ﬁ) € {(1, 2), (2, 1)}, that we

can treat at the same time. The last expression equals

A, D A JMA MO
Z f{\A X0y |a X<y T Z —\/— Toax)|< i | A X O |< )

(26)
As for the second term, as already commented just after the definition of I5;, on {|A; X (m)]|
< \/Th, A J™ £ 0} we have {|A;M™)| > \/r,}, thus, by Lemma 4.8 point 1,

1 < . m
P{ﬁzAiJ( )Az’M(@fﬂAixm\sm,mix@ns\/m#0} Z{AJ( #0,|A M| >/},
=1

i=1
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which tends to 0, thus the second term of (26) tends to 0 in probability.
As for the first term, on {|A;X®| < /r;} we have |A; X | > |A;Z0)] — |A; D] then

1A ZO) < |[AXO]+|A;DO| < \fr, + (/hIn+ < 2,/r, thus the first term is dominated
by

7 2 ADTAMO L n 500 1< 8k ol iz 0|<2 )
i=1

since, similarly as above, the terms where A;J¥) # 0 are negligible, and {|A;Z¢ | <
2/Th, AJO =0} = {|AMO] < 2/, A;JY = 0}, we are left with \/EZZZ:[A .D(m
'AiM“)IﬂAiX(l)‘SﬁJAiX(z)KﬁJAiM(a‘SQ\/E’AN(@):U}. However again the same sum above
with {A;J® # 0} in place of {A;J© = 0} is negligible, because on {|A; X O] <, /ry,, |A; M|
<2, A;J® £ 0} we still have |A;M©)| > V/Th- S0 we remain with

NG D ADMWAMOL A xwi< i jax )< i a0 <2 7)- (27)
i=1

Now, by Lemma 3.1 in [5] we know that on |A;M ] < 2,/r;, we have A; MO = A;M®
hf2v )(dx), where A,MOF = [ " Jocucon, @A (d,ds), and v, is a given sequence

Satlsfylng 0<u, < rh/ . As a consequence, exactly as in (43) of [5], the component

= / a{™ds DMLy n ) 1<y ax )< g <2 )
ﬁ i=1 ti—1
of (27) tends to zero in probability. Now we show the negligibility of
EZ / oM AW AM O T A x 1< i X @1 i 8,000 <2 7)
i=1 Yti-1

in fact, by the independence of W™ on il also [ [; o™ aw{™  MOh] = 0, and the squared
norm ||.||3 of the last display is dominated by

—F [( é /t;il Ugm)dWs(m)AiM(Z)h> 2] _ % i B [( /;1l O'gm)dWS(m))2 (AiM(Z)h>2]

1/4

K 1 m 1
§%n-hln<ﬁ)-h/o 20 (de) < Kr, & log - — 0.

Finally we show the negligibility also of

1
\/_Z/ AWk / w9 (d) [ a x 0] i A X O < A M O] <2y
2up,
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in fact recall that f21vh o9 (dz) = ey, [(1 — (2v)' 7)) 15,21 + In ﬁ]az:l} is positive for all
the values of ay € (0,2), so the norm ||.||; of the last display is dominated by

Viea,[(1= Qo) i +10 5 Loy \Z / wel] )

and noting that if i # j then E[[" o{™dW{™ [7 o{™dW{™] = E[[ (" Iq, 108"
Ly, 1;ds] = 0, and that

n t; n t;
EH ;/ti—l Ugm)dem)‘} < ;/ti—l ng)dWS(m)H2 — E[Z(/ Ugm)dWsm))Q] = 0(1).

i—1 Yti-1

It follows that (28) is dominated by Kv/i[[1 = (200)! | a1 + I 5o | = 0.

We now deal with I, of (17). We have

n

_[4 = Z AZM(I)AZM(Q)]{lAzx(l)‘S\/ﬁ,|Azx(2)|§\/ﬁ}

=1

= Z AiM(l)AiM(z) [I{AiN(l):O,AiN@):O} + I{AiN(U:O,AiN@):O}C] I{|A¢X<1>|SW,IA2~X<2>IS\/H}

- Z AMWAME {I{AiN<1>=0,AiN<2)=0} — Liamm =088 =0yn(a x|y A X @<y T

=1
I{Amm:o,AiN<2>:0}Cﬂ{\AiX0>|s\/mmz-x(2>|§\/ﬁ}] :

However, where both A;N® =0, A,N® = 0, we have A;MOA;M® = ¢, thus I, =
Siy Lk, where

Lia==) &liaxm—navo—op 113= =) Gil{a, 50020 A 5O =0)n(1AXD|< i |A X < )
i=1 =1

I = Zfz, Iya = ZAiM(l)Az’M(2)I{AZN(U:o,AiN@):O}Cm{IAiX(”\S\/ﬁ,lAiX@)IS\/ﬁ}‘
i=1 i=1

We are going to show that the terms I, o, [4 4 are negligible wrt 05, while I, 3 is negligible
either wrt 65 or wrt > | &, depending on the parameters values. As for Iy, using again
that Taup = Ia + Ip — Ianp, it is sufficient to show that both ZLI fiI{AiN([)Zl} << B, for

(=1,2and >}, Eilin, n0>10, @513 << 0. Using the independence of & on A;N®, we
reach that

Eial&liagosny) = KEG0:,  Eial§ A 5ws1y] < KE[E]0,.
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Thus, if, for any ¢, we call

2[ £
215 {ANO>1} ZX“
we have that V¢ > 0, >, ., Ei 1] < Kzti<t [52] < KnkEl[& ], which, by looking at
Theorem 4.3, tends to zero in all the cases v € [0, 1]. Further, > 1<t Eica[xi] is positive for all
t, and increasing in ¢, thus the convergence is also ucp. Moreover YVt > 0, D i<t E;, 41X} <
nE[€2]/0, < nVar(&)/(K0), with K € (0,1), having used that, since &; is not constant,
then F?[¢] < E[€?]. Using now for nVar(&;) the expressions at the denominators of (30),
(31), (32) it is verified that under our assumptions nVar(&)/02 — 0 in all the cases
v € [0,1]. We remark that for the case v € (0,1) and a; > x, condition u > 1/[2(14a2/a1)]
is needed, however it is implied by our assumption (7). It follows that > . | x; 220, that
is Z?:l fi[{AiN(Z)zl} << Bs.
If we now call P{Ai]\?(l) >1,A,N® > 1} =012 < 05, and

n n
B gi[{AiNﬂ)zl,AiN(?)zl}
D= ; 7
=1 2

i=1

wehave 32, o, Bia[xi] = [£] Blei]%2 < ] Bla] “F 0, and 55, o, Bia[\3] < KnVar(€)/6:

— 0, 50 again 3.7 y; < 0 and Y7, Silin,ws1 8051y << ba.

We now show that within I3 is negligible either wrt 65 or wrt Y ", &. Each term
of the sum is counted only if both A,N¥) = 0,5 = 1,2 but [A;XO| > V/Th for at least
one index ¢. Note that if A;,N® = 0 then A;JO = 0 and A,V® = 0. However, as
commented for I3, we have {|A;X©O] > /r, A, J® =0} C {|]AMO] > /(1 —p)}, and
P{AVY = 0,|AMO| > /rp(1 —p)} < PIAVO = 0,|AMO] > /rd+ P{|AMO)] €
(V7r(1 = p), /Fa]} < 03% + 0202 ~ 0,1°. Tt follows that

EllLsl] < Y16l VE:he < Ky/n Var(@)vn 62h% = K\/n Var(&) e 0% = a, :
=1

looking at (30), (31), (32), depending on the different choices of 7, aj, ag we have the
following: for v € (0,1) and ay < z,, we have a,, << 0, iff u > 1/(4 — 1), however this
last condition is implied by (7); for v € (0,1) and «; > x, then, using also Proposition 4.4,
ap << Y v & if y =1 then a, << 6y iff u > 1/(4 — ay); if v = 0 and either a; < asu
or (v = apu,ay = 1) then a, << 6y; if v = 0 and either (a; = apu,ay > 1) or a3 > asu
then a, << > &.

Finally we show that I, is negligible wrt to 6, : we check this when the summands
satisfy the three cases (A;N® = 0,A,N® > 1); (AN® > 1, A,ND = 0); (A,N® >
1,AN® > 1), which are dealt with similarly. For the indices i such that A;N® =0 and
A;,NO > 1 then the terms with A;J® # 0, as previously, do not contribute to Iy 4/6s,
since |A;XW| </, and thus [A;MM| > /7, (1 — p). We then remain with the terms
where A;JW) = 0 and, since |A; XD| < /7y, we have [A; M| < /7, (1+p). On the other
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hand on {A;N® = 0} we have A;J® =0, and thus also |IAMP| < /(1 +p). Tt follows
that, as for (27), A;M© = A; MO — hf . Now
.-

e

< 1 _og o _o1 3,
ZE (AMORSMONPIAN > 1} < ifuiitr oy </
i=1

WEAMOM T v sy

1 n
L3 A
=1

1

having used: the independence among the increments and the independence of the A, M "

with N, the Holder inequality to reach that E[(A M(l)h) (AMPM)2] <
§ Joco, e (day) [ Joca, 30 (dws) = WPy, - Further

ti—1

1
HZh/xV dx)/xy (dz) I a, mo >1}H<KhH[|1 (200) | Ty 1+ Ly 11n7

=12 h

which in the worst case of a;, iy > 1 is dominated by Khvl D‘lv}IL @2 < pltid-e)ti(-az) _y

0. It follows that é H S AMYAME I{AiNle} } — 0, and thus

1
E [—
b &

AVOANOT )
> AMONMP A 5o 0080 21,8000 0)0 {5 X O£y A X O] <y}
=1

| o

For the indices ¢ such that A;N® > 1 and A,NO) = 0, we reason similarly as above and
obtain that

n

1
E |:6—2 Z ‘AZM(l)AZM(Z) ’[{Ai]\?@)21,A¢J<2)=0,A¢N<1)=0}ﬁ{|Aix(1>\S\/ﬁJAiX(Q”S\/ﬁ,}} — 0

=1

For the indices i such that A;N® > 1, A;N@ > 1, then the terms with one A;J® # 0,
are negligible and we remain with the terms where both A;J® = 0, thus we reach that
both |A; M| < \/r(1 + p) and, as above,

1
E [9_2 Z |AiM(1)AiM(2)|I{AiN<2)Zl,AiN“)Zl}m{\AiX(l)|§\/T‘h,\AiX(2>|S\/7"h7} — 0,
=1

and the proof of the negligibility of I, 4 wrt 0 is completed.
We thus obtained that IC' — IC' ~ v/h + Yo & + 02 Now we are going to make this
more explicit. In (5) we compared v/A with Yo & As for 0, versus vh we have that:

02<<\/Elf042< QQN\/ﬁifOéQ

2u’

92>>\/E1f052>

2u’
Comparing now 6, with >~ | &, we reach that

when v =1 s>>3"" & for ap=ar=1: if u> §; for (o, a2) # (1,1): Yue(0,3)

when v € [0,1) 6,>>>"" & for oy <asu: any ue(O ) for ay >y > asus 1ﬂ?u>1+a2

when v € [0,1) Gh<<> " & for g = ag: any ue (0, 5).
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It follows that

IC — IC ~ I, <92 [1{7 13 + Lyepo,1),a1<azu} + I{WE[O 1),a2>a1 >azuu> }]

+ Z & []{76[0 1),a2>a1>azu,u<

=1

a+a

} + ]{'yE[O 1) o= a1>a2u}]>

+]a2<i <\/E|:]{'y_l,oq<a >3 + ]{'yE[O 1), o¢1<o¢*}i| + Z& |: y=1,01>0a}* + I{fye[[),l),al>o¢’1*}:|) .

However: note that u < T implies a1 > anu; if a1 = ap then oy > asu, since ag > anu;
a; < 1/(2u) = a1 < a3*. Thus the above display simplifies and (10, 11, 12) follow. O

5 Appendix 2

This appendix contains the technical proofs of the following results presented in Section 3
and in Appendix 1: statement (5), Remark x) to Theorem 3.2, Theorem 4.3, Proposition
4.4, Theorem 4.6, Lemma 4.8, Lemma 4.9, Lemma 4.10 and Lemma 4.11.

5.1 Remarks for the main result

Statement (5). Defined

* Qo ok
= € (2u, 1), =
% aou —u+1/2 (2u,1), @

we have that:

5{ ifye0,1): Y. & <<Vh iff oy <af; (29)

if v=1: > & <<Vh iff a; <o

Proof . We heavily use Proposition 4.4. In the case v € [0,1) we have Y | & ~ nE[&].
Using (34) we have that on {oy < agu,as = 1} U{a; < apu,ay > 1} both a; < of and
nE[&]/vVh — 0. On {oq > apu} then nE[&]/Vh — 0 iff oy < o

In the case 7 = 1 then on {ag < l,ap > 1} U{ag = 1 < ap} we have oy < a7*. If
u>1/(2+ as — 1) then S0 & ~ nE[¢] and nE[&G]/Vh — 0; if u < 1/(2 + ag — o)
then 7 &/Vh ~ /nVar(&)/vVh — 0. On {1 < a; < ap}: if u > alicm then

S €~ nE[G] << Vhiff ap < . On the other hand u < —— is equivalent to

a1tas

ay < 1/u— ay, which is less than o7*; and if u < o +a then > 1" &~ y/nVar(§) << Vh.
Finally, when a; = ay = 1 then 37 &/Vh ~ /nVar(&)/Vh = Vhe2/V/h — 0, and

a =1 < o™, O]

Remark x) to Theorem 3.2. For fixed h, the convergence speed is a function
s(7y, a1, ag, u) of our parameters. Such a function is smooth most of the times, however it
has some singularities (as is evident in Figure 1).
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In fact when u > ay /(o + ) and v € [0,1) : if a; # ay but the two indices are close
and above 1/(2u), then s = he™®2 = h!'7®2% while at @y = ay the function s jumps at
g27%2 = pPu=a2u The jump would disappear if it was v = 1/2.

On the contrary, we have smoothness at o = of if as < 1/(2u): in fact if oy is much less
than as (case oy < of <1 < ay < 5-) then s = = h'/2 for a; at o we have s = Vh =
ghtar oz , and with oy € (af, ag] still is s = ¢ 1431792 When v =1 we have smoothness at
ay = 1/(2u). in fact when ay = 1/(2u) we have \/_ he=“2. O

5.2 Proofs of the tools for Theorem 3.1

Theorem 4.3. Assume A2-A5, 0 < a1 < as < 2,09 > 1,0 < ¢; < 9. Take e = h*, an
u €]0, 1[ and define

L+2u— /=420 — Du? +4du+1
Ty = U= (;j Ju “ € (u, o).

Then as € — 0 the following quotients are tight:
i)if v € (0,1) :

Z 52 ( )C(l 1) _a2I{a1>a2u}u{a1=a2u,az>1} - ThcAchzFO(g) (30)
ﬁ@l‘””\/hgz‘awCl(?)C(Q 2 Lay<any + 701 (1= 7)C(2,2) (0,20}
i) If y = 1:
Zi 51 _ ThCAchzFl( ) (31)
\/T\/Engal/%agm ( )02( )
iii) If v = 0: with G = C'(2,2) — 20,410(1 2) 4 ¢%,C(0,2) we have
Zi Sz TC(l 1) 2I{a1>a2u}u{a1 =aou,a>1} ThCA1 CA2F0 (5) (32)

ﬁgl—a2/2 \/hQC,%hC(O’ 2>I{a1<a2u} + 520% [0(27 2)]{a1>a2u} + G]{al:aw}

/ /|x<E )(da, dt)

and recall A% iniv) of Lemma 4.2: each &;, i = 1..n, has the same law as (X — hA7) (X5 —
hAj). For simplicity we write A,, in place of A% . We are going to compute E[Y ", &] and
Var[Y " | &), we thus need to compute the moments E[(X§)"(X5)™], with k =2,1,0,m =
2,1,0. The bivariate process X¢ = (X5, X5) is Lévy with Lévy measure v.(dxy,dzy) =
Lo<ay wo<eyVy(dy, dz), and note that, for small e, 0 < z1,20 < & = 2 + 23 < 1, so
we reach the desired moments by differentiating the characteristic function o(ui,us) =
ElefXitiuzXs] — exp{h [(e™1®1Hu2t2 — 1 — juy 3y — jugws) ve(day, das)}, then evaluating it
at (0,0), recalling the expression of v, and using Lemma 4.2. In particular we have:

Proof . Define

E[Xf] - E[XJ =0
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2 o
B|(xi)]=n /]R afvi(dey, drz) = yC1(2)he”™ 4 (1= 7)0(2,0)he”e ™,

Note that if v € (0,1) then as € — 0 we have
? a2
2 [(Xf) } = yC1(2)he*™ + (1 — 7)C(2,0)he’™1 %2 ~ he? 1 A,

where A = 7C1(2)]{a1<as} + (1 = 7)C(2,0) {0,205} In fact, with ¢ = £2 € [1,+00), the

@2 _
quotient e”e1 2 [e2-mg20—mé—2tan — (2=e1)(9=1) hag an exponent which is non-negative
for all oy, ae € (0,2), and zero for o = as.

2
E[(XQ) } —h / 22v.(drr, das) = hC(0,2)e2
IR2
E[XfX;] = h/lR2 r1x9V:(dxy, dxs) = th%_”C(l, (1 —7)
E[(Xf)?)(;] —h / 22rov (dy, ds) = he T2 72 0(2,1)(1 — 7)

R2

E[XT(XE)Q} = h/m2 z1250, (dxy, doy) = h52+%_a20(1, 2)(1—7)

E[(Xf)%xg)?] — 2p2 [Xfxg‘} +h/}R2 2202 (da, dws) + h? /132 22v.(drr, ds)-

: / 220 (dry, dig) ~ (1 — 7)he? P22 0(2,2) + hC(0, 2)52—%13[()(5) ]
IR2

Let us first concentrate on E[) . &;]. From the above we reach that

EG=E[X; X5)+ h2 A As=(1—7)C(1, 1)he' To1 7 4 ey 0,2 [(1 —e! ) (1=e"72) L) anr

1 1 1
+In—(1— 51_02)Ia1:1<a2 + (1 - 51_0‘1) log —Ita, <as=1} + In? —Ial:a2:1] ) (33)
€ € €

Note that since e = h*, as h — 0 we have E[¢;] — 0.

i) and iii). If v € [0,1), then we have the following leading terms in the expression of
E[&], when h — 0: when both «,, = 1, for sufficiently small h we have he' el >>
h?In* L so the leading term is th%_O‘Q, coming from E[X$X5]; when a; = 1 < ag, then

224,

the leading term is still th%_aZ; when a; < ay = 1, the leading term is he'T 72 when
u = asu < ay, whileis h?*(1—£'1)log £ ~ h?log 1, coming from h? A; A,, otherwise. When
both a,, # 1 then under our framework we necessarily have ay > 1; note that asu < 1;
if a; > 1 then the leading term turns out to be th%_”; If a; < 1: he'T el T i the
only leading term only if asu < aq; when asu = ap (and still ap > 1) then heltarTer o
h*(1 —el=1)(1 — e'722) ~ —h%e!72; when ayu > «; then the leading term is —h%e! 2.
However {oj = as =1} U{ag =1 <am}U{u<ag <ay=1}U{ag # 1,as > 1, apu <
a1} = {a; > apu} and here is where the only leading term is F [XfX;];
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{ar =u,a0 =1} U{ag = agu < 1 < ap} = {ay = asu} and here: if ay > 1 then E[XfXS]

and h?A; A, have the same speed th%_aQ; if oy = 1 then only h?A; Ay ~ h? log% is
leading;

{ag <agu <1 =a}U{ag < agu <1 < ap} = {a; < agu} and here the only leading
term is h2A;A,. Thus

Z &il ~ )C(1, 1) 2[{a1>a2u}u{a1 —asuas>1} — Thea,ca, Fo(e). (34)

ii) If v = 1, then nE[¢;] = nh?A; Ay, and again the leading term is different for different
choices of aq, as. We have

El&)] ~ Thea,ca, Fi(e). (35)
As for Var(;): in the general case v € [0, 1], writing X,,, for X2, Var(¢;) is given by

E[X7X3] — 2hAyE[X7X,) — 2h AL E[ X1 X3] + WPASE[X7) + hPATE[X3] + 2h*A; Ay B[ X X+

—E? X, X,] = hz/ l’%dl// ridv + B[ X1 X,) + h/ riridv+
0<z1,x2<¢ 0<z1,x2<¢ 0<z1,x2<¢e

2hA B[ X7 X5] —2h A B[ X1 X5] +h2ASE[X]] +h* AT E[X3] +2h% A1 Ay B[ X1 X,
=S Ve, (36)

where

- 72 2 27 . K Y’ . - 2
Vi=h / xldu/ xadv; Vo=FE*[ X1 X,]; Vg—h/ r2ridy;
0<z1,22<¢ 0<zi,22<e 0<z1,22<e

Vi=—2h Ay E[X7 Xo]; Vs = —2h A1 E[X, X3]; Vo= h*ASE[X7);
Vi= WPATE[X]]; Va=2h* A1 AL E[ X, X,).

As € — 0 all these terms tend to zero: we now establish the leading ones and we only keep
them.
i) If v € (0,1), we have the following properties:

1
Vi ~ RPN AC(0,2) >> Vg ~ WP [(1—e' %)% 4, 00 +1In - Ip,—1]Ac?™01; Vy = (1—)%

X2 1 1 az_,
.O2<1’ 1)h2€2(af+1 0/2)’ ‘/;1 — _2(1 _ ,Y)hchQI:(l _ 51_a2)[a27ﬁ1 + 1n g [a2:1]0<2’ 1)514_2(1? 9

are negligible wrt V3 = (1 — ~)C(2, 2)hs2+2%_a2; recalling that we chose a; < ay and we
only are interested in the case where at least ap, > 1, we have that

Ve =2(1 —)C(1, 1)cAch2h381+Z%_a2 (1—¢el o).
(1 _ 61—012)[ _ 1—aso 1 _ 1—aq 1 2 1
ay,a#1 + (1 € )ln €Ia1=1<a2 + (1 € )ln €[a1<1:a2 + In c [alzagzl
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1 2 _q
<< V= —=2h%cy,[(1 ="y 11 +1n . o] (1 = 9)C(1,2)* a2,

Note that since the terms V5 and V3 are both negligible, here we do not need to distinguish
which is the leading term within Vs + Vs = E[X; X5 (E[XlXQ] + 2h2A1A2). Finally

1
Vo= h3 [(1— e o, 21 + In® . I4,-1]C(0,2)e*™* << 1,
so we are left with
Var(&) ~ Vi + Vs + Vs
Now, as h — 0, we have:
‘/1 0 if Qg = (V1 = 1

v—) K ifa2:a1>1
2 0o fag<l<aora;=1<ayorl<a <as

0 if oy < asu 0 ifag € (x,,2)
%—> K if o = apu %—> K if oy = 2,
oo if ag > asu oo if ag € (0, ).

By considering the different regions a; < agu; a3 = agu; oy € (aau, ,); ap = oy ag €
(24,2), we find that V5 is never the leading term in V; 4+ V3 + Vi, V] is the only leading
term for ag € (0,x,); Vi ~ V3 are leading for ay = z,; and V3 is the only leading term for
ay € (zy,2). However if oy < z, then necessarily ag < ay so A becomes yC(2) and

Var(&) ~ h*yCy(2)C(0, 2)54_0‘1_‘”[{&19*} + h(1 —)C(2, 2)52”%_“2[{%21*}

= he?*? [he® "1y C1(2)C(0,2) [y <o} + e2al (1—7)C(2, 2) {0y >0.}]

so, recalling (34), (30) follows.
ii) If ¥ = 1, then it turns out that Var(&;) is given by Vi + Vg + V7 =

~ Vo= E[XTXG) = h2/

0<z1<e

QJ%Z/J_(d.Tl)/ 23y (doy) = h2e**172C(2)Co(2), (37)
0<z1<e

and thus, recalling (35), (31) is verified.
iii) If v = 0 then Var(&) ~ Vs + V5 + V7 and it turns out that

Vs if a; > aou
Var(&) ~ VE; ~ ‘/5 ~ V} lf a1 = QU
Vz if o] < U,
and, recalling (34), (32) follows. O

Proposition 4.4 Assume 0 < a1 < as <2, a2 > 1,0 < ¢ < ¢, u € (0, %) As h — 0 we
nVar(&1)

have EE]

— 0 in the following cases:
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i) for v € [0,1): for any choices of oy, s and u, as in the assumptions;

i) fory=1:on{a; <l,as >1}U{y =1 < g} iff u € (m,%);on {1 <a; <}
iff u € (al}rw, 3).
We have %:(]&)

iii) for v = 1: on {ay = ap = 1}, any u € (0, 3).

— 400 in the following case:

Proof i) Case v € (0,1). We compute —m by using the information (rate of nE[{]

and of \/nVar(&)) summarized in (30) in the four different cases 1) ay € (0, agul, ag > 1;
2) ag € (0, ul, 2 = 1; 3) o € (vou, )5 4) a1 € (4, ). In the cases 1), 2), 3) we have

. . \/nV .
a1 <z, < (g, thus a; # as, and we reach that a sufficient condition for % — 0 1is

u € (2+a;7a1 , %) However x, < 2+ay—1/u, thus if a; < z,, then oy < 24 g — 1 /u, which

is equivalent to u > m On the other hand, in the case 4) we reach —VZ‘];[CZ(}&) — 0 for
any u € (0,1/2).

Case 7 = 0. We now look at (32). Here we separately study the regions {a; > asu};
{a1 = agu}; {ag < avu, a0 > 1} {1 < agu, as = 1} and conclude.

ii) and iii). For 7 =1 we look at (31) and we separately study the regions {a; < 1 < as};
{ag <1 =}, {ag =1 < ag}; {an = as = 1}; and {1 < a; < a3} and reach the
results. O

Theorem 4.6 When v = 1 = oy = ax: V u € (0,3), with N denoting convergence in
distribution, we have
" nE
21:16 n [51] i/\/’
nVar (&)

Proof Under v = 1 = a; = ay, MW and M® are independent, and nVar(&) ~ he?.
By the Lindeberg-Feller Theorem, it is sufficient to show that for all § > 0 we have
”E[&]{\élpé}] — 0. We begin evaluating P{|,| > 6} : by using that we have —"2&l_ _

nVar(&1)
hA; = hA; and X] = X has the same law as X5 = X5, we obtain

P{l&| > 6} < Ple| > S vaVar@) ) = P{IMO1M2) > oy /avar(e) }

0
< P{IXIX] + hAolX| 4+ hA|Xa| + WA Ay > Sy/nVar(E) | <

P{|X1||X2| > g nVar(fl)}+2P{hA2|X1| > g nVar({l)}+P{h2A1A2 > g nVcw;;fSl))}

h2A Ay _ h? 10g2 % _ 13 21
\/nVar(ﬁl)  Vhe h? IOg € —
0. We now evaluate the other 2 probabilities in (38) to establish their magnitude orders:

since X7 X5 is centered, by the Cebysév inequality, used that a; = 1, we have

Now, for sufficiently small A the last term is 0, because

) Var[\XlXQH B E2X12 N (th—a1)2 B .
P{’X1X2| > §m} - K he? - Kher Khe?2 e
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5 § h=2 X 1 1
P{hAQ]Xll > g\/nVar(é’l)}:P{\Xﬂ > 1} < K%loﬁ ~ < KW log .
Ogg

h27u 10g2

Noting that ——= — 0, it follows that P{|§1\ > 0} < Kh. Now, for any conjugate

exponents p, q,
”E[§%]{|§l|>5}] < nEE[ffp]P5{|§1| > 6} < KnE;[gp]hg-
We now evaluate
- FE 2p 2p E 2p
VnVar(&) /nVar(&) nVar(&) nVar(&)
From the expression of nFE[{;] above (35) and the given one for \/nVar(&;) the last term

equals
1 1\2p
(hT" log? —>
€

On the other hand

[ 7 _}< <E[(X1X2)2p] E[(hAy)* X77) E[(h2A1A2>2p]>;
(nVar(&))pd = \(nVar(&))r (nVar(&))P (nVar(&))r

2p
the last term contributes with ( h%/2~%log? % ; the second term, by the Burkholder-Davis-

Gundy inequality and recalling that a; = 1, is dominated by

t; 5 p
c )

he?

and the first term is

2 2 2
EIX"X5" _ E2[X77] < K(ha)gp — KhP.
(he?)p (he?)p (he?)p
Thus
- 2 . 2 . 2
i < k(1102 1) "4 (102 1) w102 D) ) ~ (nEa0g )
g £ g g

It follows that by choosing ¢ sufficiently close to 1, and precisely ¢ < 1/(2u), we have

Lrsopyy L 1\2P3 1 1 1
nEv[{F]ha < Kn<h%_“ log? —) TP e~ KR log* = — 0.
€ €
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5.3 Proof of the tools for Theorem 3.2

Under the assumptions of Theorem 3.2 the following Lemmas holds true.

Lemma 4.8 Let L be a one-sided a-stable process with characteristic triplet (z,0,c -
Iipsopr™ 1 7%dx), let Hy = (L, — zt),, take € = £(h) s.t. h/e(h) — 0, any constant p € (0, 1)
s.t. p > |z|h/e and any ¢ € (0,1 — p). For m = 1,2, i = 1..n we have the following.

L P{AN 0, (AM™)2 > 1y} < K2 P(IAM™| > K\/73) < Ko,

2. P{IAL| > &% ag Liara=e = 0} < K09 + KO(g™ — 1).

i—1,ti]

3. P{AM™]| > /ry(1—p), AV = 0} < KO° + K0, (g7 — 1),

4. P{AH | <e(L+p) X sep, g lHab>ey = 1} < K03 +60(1 — (14 2p)~)]
P{AL| <&, % oy 1oy Loarase = 1} < K[0Y2 +0(1 — (14 2p) 7).

5. With & = /5, we have P{|AM™| < /r(1+ p), AV > 1} < KO + K0,,(1 —

(1+2p)=m).
Proof . Point 1. By the independence of N M and using the Markov inequality for
1 2 (m Py
P{(AMT)? > 1} we reach P{A;N™ £ 0, (A;M™)2 > )} < KhthzT;:)(dz) = K?—h.

The second inequality is a trivial consequence of Lemma 6 in [1], as M (™ is a semimartingale
following the same model as X ™ in (1) with a = 0 = J™ = 0.

Point 2: the idea here is to look at H; as half of a symmetric stable process. More
precisely, take an independent and identically distributed copy Hs of H;, then L=H,—H,
is a symmetric a-stable process. Let us fix any p as in the assumptions and call L,
and H, the processes L, H, deprived of their jumps bigger than e, e.g. H),, = Hy —
Y oset AH I am, |>e}- Note that if [A;L| > ¢ then |A;Hy| = |A;L — zh| > |AL] — |z|h >
e — |z|h > £(1 — p), and also that the jumps of L and H; are the same and are positive,
thus

PIALI> e, 3 Fansg =0} < P{AH > c(1-p), Y Fam.se =0}

S€Jti—1,ti] s€Jti—1,ti]

= P{IAH]| > (1=p), S Lamos =0} < P{AH] ><(1-p)}  (39)

SE]ti_hti]
= P{IAHY| > e(1—p), AjHy < e(1—p—q) } + P{|AH]| > e(1—p), AjHY > e(1—p—q) }.

Now on the first set of the last display we have |A;L'| = |AH, — A HY| > |AH!|—|AHY| >
e(1—p)—e(l —p—q) = eq, while the probability of the second set, by the independence of
the Hj, is P{|AH!| > (1 — p)} P{|A;H}| > (1 — p — ¢)} which is dominated by K62 by
Lemma 6 in [1], applied witha =0 =J =0, M; = fot Jy wi(da) — tfel zv(dx), v the Lévy
measure of L and fi the compensated jump measure of L. It follows that (39) is dominated
by

P{AL| > eq} + K6 - (40)
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note that P{|AL/| > eq} = P{|Ai[~/| > eq, Aiﬁf = 0} + P{|Ail~/| > 5q,Ai]§7 > 1} : by

the independence of A;L' on A; N and using Remark 4.7, points 1 and 2, we have

2 {|Aii’| > ¢, AN > 1} = P{|AL| > g} P {Aiﬁf > 1} < K073,

Therefore (40) is dominated by K07/® + P{|A;L| > eq, AN = 0} + K62 noting that
07/3 << 62, since ¢ < 1, the last display is dominated by

PUALI > 20 Y Largoey =0} +P{ Y. Iganjecosy 2 1 + K6 : (41)

SE€Jti—1,t4] S€Jti—1,t5]

using Remark 4.7, point 2 with ¢ in place of €, Remark 4.7 point 1 and the fact that
62 << 6*3, we reach our thesis.
Point 3 is a consequence of point 2. Let us denote L™ with L. We have

P{AM™| > /r,(1 = p), AV =0} = P{AM™)| > /ri(1 = p), A, V™ =0,

N Lazsy = 0} + P{UAM™| > /(1= p), AV =0, 3 Iap,on > 1)

Se}tifl,ti] Se}tiflyti]
< P{|AH | > v/ra(1 = p), Z Liam,>ymy = 0F + P{ Z Iiar,>1y > 1}
SE}ti_l,ti] SE]ti—hti]

the first term is bounded by the one in (39) with € = /7, while the second one involves the
Poisson process counting the jumps of L bigger than 1 within |¢;_1,¢;], which has parameter
hU (1), thus the thesis follows.

Point 4. With the same notations as at point 2, we have

P{AH | <e(14p), Y Igamusep =1} = P{ANH [ <e(1+p), Y Ijam.se =1,

S€Jti—1,t:] S€Jti—1,t4]

AHs| > ep}+ PUAHL] < e(U4+p) Y Tjam.oe = LIAH] <eph:  (42)
SEJti—1,ti]

the first term of the right hand side (rhs) is dominated by P{>> o, |, T(am. >} =
LIAHy| > epy = P{X .y Liamsey = 1TP{AH| > ep} < K62, having used
the independence and Remark 4.7 points 1 and 2. As for the second term, on {|A;H;| <
e(1+p),|AiHs| < ep} we have |AL| = |A;Hy — AjHo| < |AHy|+|AHy| < e(1+p)+ep =
e(1 4 2p). Moreover, by their independence, the two H, have no common jumps, so
a jump of H, cannot neutralize any jumps of H;, thus Zse]ti_l,ti] Iam, >y = 1 =

Zse}tifl,ti] I{‘AE5‘>E} 2 1 Slnce P{Zse}tifl,ti] I{|A£S|>8} Z 2} S Kéz, lt fOllOWS that (42) 1S
dominated by
K6+ P{IALI <e(142p), Y Iqazeeg =1}

6}1 lt]

< KO+ P{|AL| < e(1+2p), Z IyaLseropy = HHPE Z LAt eecaropy = 1}

SG]tZ 1,t4 ] SE]tl 1,t; }
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and the first thesis follows by Remark 4.7 point 1, with £(1 + 2p) in place of €, point 2 and
the fact that §2 << 3. The second inequality at point 4 follows from the previous one.
In fact if |A;L| < e then |AHy| = |A;L — zh| < |A;L| + |z|h < (1 + p), further L and H,
do exactly the same jumps, thus

P{ALI <z, Y Ipgsey =1} < PUAH | <e(l+p), Y. Ijmuse =1}

SE]t —1,t; ] E}tz 1 tz]
Point 5 follows from point 4. Let us again denote L™ with L. We have

P{|Az‘M(m)| < /ru(l ‘I’p)aAiV(m) > 1} = (43)

PUAM™| < /(L +p), AV 21, Y Ljazs1y = 03+

G}ti_l,ti]
P{AM™| < /ra(14p), AV > 1, 3 Igarsiy = 1}
Se}tifl,ti]

the second term of the rhs is bounded by Kh, as at Point 3. On the set at the first term
the jumps of M coincide with the jumps of L, and the very M coincides with H;. Thus
the last display is dominated by

P{AH < v +p), Y Tjamasymy 21 D Igargsny =0} + Kh <

SE]tl 1,t; } Se]tl',l,ti}

P{|AiH:| < /ru(1+p), Z Lyam,|>ymy = 11+ P{ Z Lyam>ymy = 24+ Kh,

Se]tz 1, t; ] Se}ti_l,ti]

and the thesis follows by Lemma 4.8, point 4, Remark 4.7, point 1 and Kh << 6,),. m

Lemma 4.9 Let, for i=1..n, 4; C Q be independent on W) and W® and s.t. Vi, P(A;) <
0. If each o) satisfy (6), then

D L A Py~ i T ol AW, A
ii) Any P(4;) is, we have B, o) AW AW, ] < KP(A,).

Proof i) Denote o; := oy,. We have 0, = 0;_1 + (05 — 0;_1), thus

1 n t; t;
0—2 Z [/ agl)dWS(l) / 0§2)dWL§2) — Ut(jglAiW(l)at(?leiW(Q)] I4, = (44)
-1 ti—1 ti—1
1 n 1 ti 9 ti 1 )
o [JE_)lAiW(l)/ (0@ — 6®))aw® +/ (0 — M)W Do AW 4
moiq ti—1 ti—1

ti t;
| et = oaw [ o - o )aw 1.
ti—1 ti—1



Firstly note that

is bounded by Kh/P(A;). It follows that

s 1} P(A;)

t; t;
B[l aw® [* @@ -0 )aw@]] = E[leBaw® [ (o —o)aw®
ti—1

ti—1

< \/E[Iaﬁl)lﬁz‘W“)P‘Ai} \/E [( / ot - a%dws@)%i} P(A); (45)
ti—1

since W (™) is independent on A;, its law under P and under P(- | A;) is the same, thus it
keeps its martingale property also under P(- | A;). However, any bounded cadlag integrand

1 is, the stochastic integral 7.W (™) is a martingale under P(| A;), thus E ﬂ jj’ilndeS(m) 2 1]
= E[ o n?ds‘Az}, and (45) coincides with
i—1

\/E[(aﬁ)l)? } \/E {/:il(agm—crg)l)?ds/él} (A <Kf,/ dsP(A)

which equals Khy/hP(A;). Therefore the norm ||.||; of the first term in the rhs of (44) is
bounded by

1 n
o

1=

t; 1
o AW / (o) — 052)1>dW§2>\1A,] < K—nhy/hP(A) < K/ 9& 0.
ti—1 m m

We reach the same result also for the second term in the rhs of (44). Finally

1 n t; t;
B[] [ e —otaw [ (o P awn ] <
i=1 i i
1 n t; 2 t;
SB[ @ —opawiY |aly [ | [ 0 - o )2as| 4| Pray) <
Qm i=1 ti—1 ’ ti—1 '
Ly P(A;) < Ke®m = 0
O & P(A) 7
ii) Similarly, HZZ LoD AW AW, ] =
S E[|a§£>1AiW<1 ) AW |‘A }P(Ai) < K" hP(A;) < KP(A)). O
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Lemma 4.10 With “¥ denoting convergence in probability uniformly on [0,7] and IC; =
(1

fg psoNolPds, we have

[t/h]

b ucp Cm
P Z / / o AW g gz = —1C,
ti—1 m

Proof By the independence of each W) on V™ using Lemma 4.9 and Remark 4.7 point
2, we have that the left hand side (lhs) of the above display has the same asymptotic
behavior (in the ~ sense) as

[t/h] . [t/h]
Zat(z)lAWI) AW ‘[{A V(m)>1} Z’rh
=1

However we have

[t/h] [t/h]

ZEz 17 Zatl) 2 B AW IAWONP_{A V™ > 1}
E@‘—l[AiW A W ] = i— 1[f pst] and Pz_l{AZV(m) Z 1} =1- 67/\mh with )\m =
Cm r;a mT ,and [1—e M- X\ h| < K62, thus the last display has the same limit in probability
as

[t/h t;
0 Zaf”laf o 1[ / psds] Anh. (46)
ti—1
Further, éE[Zy/}f} |a§jjla§fjl| . ‘Ei,l [ftt,l psds} e )\mh}
[t/h) N 2
K i Knh?,,
S Q_E[Z |0-15¢1_)10-£i2_)1|Ei—1 [/ |ps - pti_1|d8] /\mh} S % — 0’
m i=1 tiq m

and this implies that (46) has the same limit in probability as

[t/h]
Cm P Cm
9 Zag)latz P 1h—9 —[C

However by separating Ui(i)loi(z)l pic1 = (Jﬁ)lag)l pi1)t — (Jﬁ)lag)l pi—1)” and applying the
reasoning indicated in [9], just before (3.5), we reach that such a convergence is also ucp.
Further

[t/h] [t/h]
1 ‘7(m

E Ei_ 1} = E (o t(il,)lat(i)sz‘—l[(AiW(l))Z(AiW@))2]B—1{Az‘V( ) > 1}
m =1
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by using the expression of W®) given after (1) we find that E;_;[(A;WM)2(A,WP)?] <
Kh?, thus

[t/h] [t/h] nort
ZE LAl < K 1, z ~ / (6D aD)2ds ~ com
Thus, by Lemma 4.2 in [9], the thesis follows. O

Lemma 4.11 We have

[t/h
1 €1
9, < Zafi)lA W(I) A we I{A VO>1AV>1} = (1- V)Q_llot e

Proof Let us start by proving that

P{AVY > 1LAV® > 1} & (1= 7)0—Ipepy- (47)
aq

In fact, with ¢ = /rj,, such a probability equals P{,u(]ti_l,ti] X (g,1] x (g,1]) > 1} =

1 — e ™ ~ A, where A = v, (Jt;i—1,t;] % (g,1] x (£,1]) > 1}). In view of (3) and of
the shape of f(z) due to our choice of the parameters (see figure 1), we have A = (1 —
v) f(&l]x(&l] Ly (dxy, dxs) = v only weights the points (x1,2s) with zo = f(z1), and x; A
f(z1) > & means that 7y > f~'(e) Ve = &, while 21 V f(z;) < 1 means that z; <
U AL = f711), thus A = (1 —y)vi((e, FHD)]) = (1 —7) [015;61” - a—] having used
that f = Uy o Uy. However if v # 1 then the leading term of P{A;V® > 1 A, V® > 1}
is (1 =)0 If v =1 then A =0, and (47) is verified.
Let us now define

[t/h} , [t/R]
Z 0, Utl IA w® ( )1A W(Q)I{A V> A V@ >1} — ZXz :

=1

by the independence of each W™ on each V), we have

[t/h] [t/h]
G P C1
ZEz 1[xi] Z% o) By [/ psd5:| (1- V)a—lf{we[o,n} = (1- V)Q—IICt Liyep)y;

ti—1

as in the previous Lemma, we reach that such a convergence is also ucp. Further,
ZEZ?] Eia[x3] < K% < Ke™ — 0, so, by Lemma 4.2 in [9], the thesis follows. O
1
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