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Truncated Realized Covariance when prices have

infinite variation jumps
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Abstract

The speed of convergence of the truncated realized covariance to the integrated
covariation between the two Brownian parts of two semimartingales is heavily influ-
enced by the presence of infinite activity jumps with infinite variation. Namely, the
two processes small jumps play a crucial role through their degree of dependence,
other than through their jump activity indices. This theoretical result is established
when the semimartingales are observed discretely on a finite time horizon. The es-
timator in many cases is less efficient than when the model only has finite variation
jumps.

The small jumps of each semimartingale are assumed to be the small jumps of
a Lévy stable process, and to the two stable processes a parametric simple depen-
dence structure is imposed, which allows to range from independence to monotonic
dependence.

The result of this paper is relevant in financial economics, since by the truncated
realized covariance it is possible to separately estimate the common jumps among
assets, which has important implications in risk management and contagion modeling.

Keywords: Brownian correlation coefficient, integrated covariation, co-jumps, Lévy copulas,
threshold estimator.
Jel classification: C13, C14, C58

1 Introduction

We consider two state variables evolving as follows

dX
(1)
t = a

(1)
t dt+ σ

(1)
t dW

(1)
t + dZ

(1)
t ,

dX
(2)
t = a

(2)
t dt+ σ

(2)
t dW

(2)
t + dZ

(2)
t , t ∈ [0, T ]

(1)

∗The author gratefully acknowledge Peter Tankov, Jean Jacod, Roberto Renò and Rama Cont for their
very important consulting. This project benefited from grants by Institut Europlace de Finance Louis
Bachelier and INdAM (Istituto Nazionale di Alta Matematica).
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with T fixed, where W
(2)
t = ρtW

(1)
t +

√

1− ρ2tW
(3)
t ; W (1) = (W

(1)
t )t∈[0,T ] and W (3) =

(W
(3)
t )t∈[0,T ] are independent Wiener processes; Z(1) and Z(2) are correlated pure jump semi-

martingale (SM) processes. Given discrete equally spaced observations X
(1)
ti , X

(2)
ti , i = 1..n,

in the interval [0, T ], with ti = ih, h = T
n
, we are interested in the identification of

the Integrated Covariation IC
.
=

∫ T

0
ρtσ

(1)
t σ

(2)
t dt. It is well known that, as the obser-

vation step h tends to 0, the Realized Covariance
∑n

i=1 ∆iX
(1)∆iX

(2), where ∆iX
(m) .

=

X
(m)
ti −X

(m)
ti−1

, converges to the global quadratic covariation [X(1), X(2)]T =
∫ T

0
ρtσ

(1)
t σ

(2)
t dt+

∑

0≤t≤T ∆Z
(1)
t ∆Z

(2)
t , where ∆Z

(m)
t = Z

(m)
t −Z

(m)
t− , containing also the co-jumps∆Z

(1)
t ∆Z

(2)
t .

It is also well known that the Threshold Realized Covariance, or Truncated Realized Co-
variance,

ˆIC =
n

∑

i=1

∆iX
(1)I{(∆iX(1))2≤rh}∆iX

(2)I{(∆iX(2))2≤rh},

with e.g. rh = h2u, and u ∈ (0, 1/2), is consistent to IC ([16], [8])1. Further, a CLT
for ˆIC has been established when the jumps processes have finite jump activity (FA), i.e.
only a finite number of jumps can occur, along each path, in each finite time interval (see
[16]), or when the jumps processes have infinite activity (IA) but finite variation (FV),

i.e.
∑

s≤T |∆X
(m)
s | < ∞ a.s., for both m = 1, 2 (see [9], Thm 7.4), meaning that the

jump activity of the processes is moderate. Namely, the estimator is asymptotically mixed
Gaussian and converges with speed

√
h.

In [16] the estimator has been compared in efficiency with other two known estimators
of IC; it has been used to estimate the sum of the cojumps of X(1) and X(2) as well as
each single cojump; and it has been studied in the presence of irregular sampling and non
synchronous data; in [4] and in the web appendix of [16] the finite sample performance of
ˆIC has been evaluated on simulated data. Similarly as in [15], ˆIC tends to zero in the
presence of microstructure noises in the data.

Here we are interested in investigating the speed of convergence of ˆIC in the case where
at least one jump component has infinite variation (iV). This was not known up to now.
We find that the speed crucially depends on the small jumps, namely it is determined not
only by the jump activity indices of the two components X(m), but also on the dependence
degree of their small jumps. In the univariate case the speed found here reduces to the one
in [14].

The optimal speed in estimating IC is not known when the jumps have infinite variation.
In the univariate case IC becomes the integrated variance IV of X, and in [10] Jacod and
Reiss have shown that, defined the class Sr

A of the Ito semimartingales X such that a.s.
sups≤T |as|+ sups≤T |σ2

s |+ sups≤T

∫

(|γ(ω, x, s)|r ∧ 1)ν(dx) ≤ A, with r ∈ (1, 2] and A ∈ IR,

the quantity ρh = (h/| log h|)(1−r/2) is the highest possible speed, for any estimator of IV ,
to be a uniform bound for the models within Sr

A, and the bound is sharp. For a comparison
with the truncated estimator, note that when the model has α stable small jumps (as in
[14]) then (if A is sufficiently large) it belongs to Sr

A for any r > α, but not to Sα
A, and

for any such r we have ρh > (h/| log h|)(1−α/2). Now by taking threshold function r(h) =

1For the literature on non parametric inference for the IC of stochastic processes driven by Brownian
motions plus jumps, see [16].
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(h/| log h|)2u, with u ∈ (0, 1/2), rather than h2u, then the threshold estimator reaches speed
(h/| log h|)2u(1−α/2), which is the same as ρh as soon as 2u = (1− r/2)/(1− α/2) < 1.

In [11] Jacod and Todorov refine an estimator given in [10] and show that its speed is√
h in the semiparametric class, that we call S loc

Stab, of the Ito semimartingales X having
α stable-like small jumps, Ito semimartingale volatility σ and coefficients with a specified
paths regularity.

Now, given an estimator ˜IV , a possible estimator of IC is given by ˜IV (X(1)+X(1))/2−
˜IV (X(1))/2− ˜IV (X(1))/2, thus the best convergence speed of an estimator of IC is bounded
by ρh if the model falls within Sr

A and is
√
h if the model falls within S loc

Stab. The univariate
version of the semiparametric model we are considering in this paper is not necessarily
included in S loc

Stab, because we have a general càdlàg process σ. However we remark that
the speed of ˆIC we show below: in cases (10) is

√
h, so it is optimal and better than ρh,

moreover the asymptotic variance of ( ˆIC− IC)/
√
h is the optimal 2

∫ T

0
σ4
sds, as in the case

of symmetric jumps in [11], but is better than in the case of not symmetric jumps in [11];
in cases (12) the speed of ˆIC is worse than

√
h but is better than ρh; while in cases (11)

the speed is worse than both.
Estimation of IC is of strong interest both in financial econometrics (see e.g. [3]) and

for portfolio risk and hedge funds management ([6]), in particular [X(1), X(2)] − ˆIC gives
a tool for measuring the propagation among assets of effects due to important negative or
positive economic events.

An outline of the paper is as follows. In section 2 we illustrate the framework, in section
3 we establish the exact convergence speed when both the Z(m) have IA and at least one has
iV. Namely, we assume that the small jumps of the Z(m) are stable and their dependence
degree can range, in a specified way, from independence to monotonic dependence. The
proofs of Theorems 3.1 and 3.2 are contained in Appendix 1, while Appendix 2 contains
the proofs of the needed auxiliary results which are stated in section 3 and Appendix 1.

2 The framework

Given a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ), let X(1) = (X
(1)
t )t∈[0,T ] and X(2) =

(X
(2)
t )t∈[0,T ] be two real processes defined by (1) and X0 = (0, 0), where

A1. the coefficients σ(m) = (σ
(m)
t )t∈[0,T ], a

(m) = (a
(m)
t )t∈[0,T ], m = 1, 2, and ρ = (ρt)t∈[0,T ]

are adapted càdlàg processes,

A2. for m = 1, 2, Z(m) = J (m) +M (m) are jump Ito SMs, with

J (m) .=

∫ ·

0

∫

{|γ(m)(ω,x,s)|>1}
γ(m)(ω, x, s)µ(m)(ω, dx, ds),M (m) .=

∫ ·

0

∫

{|γ(m)(ω,x,s)|≤1}
γ(m)(ω, x, s)µ̃(m)(ω, dx, ds),

where, for each m = 1, 2, µ(m) is the Poisson random measure counting the jumps of Z(m)

and µ̃(m)(ω, dx, ds)
.
= µ(m)(ω, dx, ds)− ν(m)(dx)ds is its compensated measure (see [9]).

It turns out that J (m) are FA jump processes; they account for the rare and large (with
size bigger in absolute value than 1) jumps of X(m). On the contrary, M (m) have generally
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IA jumps (the path ω ofM (m) jumps infinitely many times on [0, t] iff
∫ t

0

∫

{|γ(m)(ω,x,s)|≤1} ν
(m)(dx)

ds = ∞); M (m) are compensated sums of very frequent and small jumps.
For each n ∈ IN we observe X(1), X(2) discretely and synchronously at times ti = ih.

Since h = T/n, then h → 0 iff n → ∞.

A3. We choose a deterministic function rh of h, called threshold, satisfying

lim
h→0

rh = 0, lim
h→0

hlog 1
h

rh
= 0.

Denote, for each m = 1, 2, by

D
(m)
t =

∫ t

0

a(m)
s ds+

∫ t

0

σ(m)
s dW (m)

s , Y
(m)
t = D

(m)
t + J

(m)
t

respectively the Brownian semimartingale part (BSM) of X(m) and the BSM part plus the
FA jump component.

The truncated realized covariance is able to separately capture IC because it excludes
from

∑n
i=1 ∆iX

(1) ∆iX
(2) those increments where jumps bigger than the threshold occurred,

so when h → 0 all the jumps are excluded (see point iii) in the proof of Theorem 1 in [13],
then Lemma A.2 in [5] and Lemma 1 in [13]). However, the remaining jumps, that in
absolute value are below

√
rh, determine, in some cases, the speed of convergence of ˆIC.

Notations. Given two (possibly random) sequences Un, Vn, we say that Un = OP (Vn)
if for any ǫ > 0 there exists a constant η > 0 and an n̄ such that for all n ≥ n̄,
P (|Un| > η|Vn|) < ǫ. We write Un ∼ Vn when as n → ∞ we have both Un = OP (Vn)
and Vn = OP (Un). When ∀n, a.s.Vn 6= 0 : Un = OP (Vn) means that, for sufficiently large
n, the sequence Un/Vn is bounded in probability (i.e. tight); with a a constant, Un ≈ aVn

means that Un/Vn
P→ a, with

P→ denoting convergence in probability; Un << Vn means

that Un/Vn
P→ 0; Un >> Vn means that Un/Vn

P→ +∞.

3 Main results

We find here the speed of convergence of ˆIC − IC to 0 when both M (m) 6= 0 and at least
one of them has iV. We specialize our analysis to the case where the small jumps of each
X(m) are stable, i.e. M

(m)
t = L

(m)
t − z(m)t − ∑

s≤t ∆L
(m)
s I{|∆L

(m)
s |>1}, where L(m) are αm-

stable Lévy processes with characteristic triplets (z(m), 0, ν(m)(dx)), with ν(m) given below.
Further, we assume that the occurrence of the joint jumps of L(1) and L(2) is characterized
by a Lévy copula C ranging in a given class. We have αm ∈]0, 2[ for each m = 1, 2 and
assume without loss of generality (wlg) α1 ≤ α2. Since we are interested in the case where
at least one αm ≥ 1, we assume α2 ≥ 1. Further, for simplicity, but wlg, we develop our
proofs for the case where the Lévy measure of each L(m) is one sided, i.e. L(m) only makes
jumps with positive sizes.

4



A4. Take α2 ≥ 1, and α1 ∈ (0, α2]. With cm > 0, m = 1, 2, the jumps of each L(m) have
Lévy measure

ν(m)(dxm) = cmx
−1−αm
m I{xm>0}dxm.

We denote, for each m = 1, 2, by

Um(xm) := ν(m)
(

[xm,+∞[
)

= cm
x−αm
m

αm

, xm > 0 (2)

the tail integral of the marginal Lévy measure ν(m) of the jumps of L(m). Note that αm is
the Blumenthal-Getoor index of L(m), of M (m) and of X(m).

In order to describe the joint jumps, we make use of Lévy copulas, because, due to
the stationarity of the Lévy processes increments, the Lévy copulas allow to separate the
time component in the law of a bivariate pure jump Lévy process L from the jump sizes
component and allow to describe the dependence between L(1) and L(2) through only the
dependence of their jump sizes. Lévy copulas were introduced in [18], further studied in
[12] and their properties are well summarized in [6].

A5. For any t the joint jumps occurrence of
(

L
(1)
t , L

(2)
t

)

is described by the following tail
integrals

U(x1, x2) = νγ([x1,+∞)× [x2,+∞)) = Cγ(U1(x1), U2(x2))

where Cγ(u, v) is a Lévy copula of the form

Cγ(u, v) = γC⊥(u, v) + (1− γ)C‖(u, v),

where C⊥(u, v) = uI{v=∞} + vI{u=∞} is the independence copula, C‖(u, v) = u ∧ v is the
total positive dependence copula, and γ ranges in [0, 1].

A5 means that, at any t, (L(1), L(2)) can only have two basically different classes of
jumps: i) the disjoint ones, meaning that Lt jumps with size either (0, x2) or (x1, 0). This
type of jumps is regulated only by C⊥; ii) the joint ones, meaning that Lt jumps with
size falling into a point (x1, x2) with both xm 6= 0. This type of jumps is regulated only
by C‖, which characterizes a bivariate jump Lévy process L̄ whose marginals L(m) are
Lévy and only make joint jumps which are completely positively monotonic, i.e. there
exists a strictly increasing, strictly positive function f : ∀s > 0 ,∆L̄

(2)
s = f(∆L̄

(1)
s ). In

fact the sizes (x1, x2) realized by the jumps of L̄s turn out to be supported by the graph
of f(x1) = U−1

2 (U1(x1)), which in our case of one sided α-stable marginals is given by

f(x1) = ((c1α2)/(α1c2))
−1/α2 x

α1/α2

1 .
Our assumption that L has Lévy measure νγ means that its jumps on the set given by

the union of the graph of f and the positive sides of the Cartesian axes. Each marginal µ(m)

counts the projection on axis xm of all the realized jumps of L. However when a realized
jump x1 is so that there exists a realized x2 such that x2 = f(x1) then x1 is interpreted
as the first component of a joint jump. Any other types of jump of L(1) are interpreted
as being associated to a zero complementary component, i.e. as being the projection of
a disjoint jump (and analogously for L(2)). By changing γ we keep the same marginals
L(m) and the same joint or disjoint jumps, but we change the weight given to the different

5



classes of jumps by the underlying probability measure. Process L̄ has joint Lévy measure
ν‖([x1,+∞)× [x2,+∞)) = I{x1 6=0,x2 6=0}ν

(1)([x1 ∨ f−1(x2),+∞)), so the νγ defined by A5 is
equivalently writable as νγ([x1,+∞)× [x2,+∞)) =

γI{x2=0}ν
(1)([x1,+∞))+γI{x1=0}ν

(2)([x2,+∞))+(1−γ)I{x1 6=0,x2 6=0}ν
(1)([x1∨f−1(x2),+∞)).

(3)
Remarks. i) A5 is equivalently expressed by:

L(m) = L′(m) + L̄(m), m = 1, 2,

where L′(m) has triplet (z′(m), 0, γν(m)(dx)), m = 1, 2, L̄(1) has (z̄(1), 0, (1 − γ)ν(1)(dx)),

(L′(1), L′(2), L̄(1)) are independent while, as said, ∆L̄
(2)
s = f(∆L̄

(1)
s ). In particular A5 is

satisfied when the bivariate jumps Z follow a factor model

Z(1) = V (1), Z(2) = aV (2) + bV (1),

with V (1), V (2) independent pure jump Lévy processes, and a, b ∈ IR: L̄ = (V (1), bV (1)) and
f(x) = bx.

ii) Note that in our framework the two components of L̄ have the same number of jumps,
however they can have different jump indices αm. In a model with ∆tL̄

(2) = f(∆tL̄
(1)) but

f(x) 6= bx, L̄(1) could make jumps much smaller than L̄(2), implying ᾱ1 < ᾱ2. When instead
f(x) = bx then the two L̄(m) have the same jump activity index.

The processes we chose to deal with are quite representative since in fact many com-
monly used models in finance (Variance Gamma model, CGMY model, NIG model, etc.)
have Lévy measures related to the ones in assumption A4, in the sense that they are tem-
pered stable processes where the order of magnitude of the tail integrals as xm → 0 is as
in (2). Moreover Cγ allows to range from a framework of independent jumps components
to a framework where the components are completely positively monotonic.

The speed of convergence of ˆIC − IC is strictly related to the speed of convergence
to zero of the sum of the small co-increments ∆iM

(1)I|∆iM(1)|≤√
rh
∆iM

(2)I|∆iM(2)|≤√
rh

(as
it happened in [14] for the univariate case), which substantially behaves like the sum of

the small co-jumps
∑

s≤T ∆M
(1)
s I|∆M

(1)
s |≤√

rh
∆M

(2)
s I|∆M

(2)
s |≤√

rh
(see [2], Lemma 5), whose

expectation is T
∫

0≤x,y≤√
rh
xyνγ(dx, dy). Note that, as soon as ε < 1, in restriction to the

set of jump sizes (0, ε]× (0, ε], the jumps of the bivariate processes M and L coincide. We
need assumption A5 in order to control the speed of convergence to zero of integrals like
∫

0≤x,y≤ε
xkym νγ(dx, dy), for ε > 0 and integers k,m.

In our main Theorem (Theorem 3.2) we are going to show that

ˆIC − IC ∼
√
hUh +

n
∑

i=1

ξi +
n

∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{
∑

s∈]ti−1,ti]
I
{|∆M

(2)
s |>√

rh}
≥1},

(4)
where

ξi = ξεi
.
= ∆iM

′(1)∆iM
′(2),

and for m = 1, 2

M
′(m)
t

.
= M

(m)
t −

∑

s≤t

∆M (m)
s I{|∆M

(m)
s |>ε} =

∫ t

0

∫

{0<x≤ε}
xµ̃(m)(dx, ds)− t

∫

{ε<x≤1}
xν(m)(dx),
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and Uh is a sequence of rvs converging stably in law to a mixed Gaussian rv. So we
preliminarily state the following crucial result, which deals with the asymptotic behavior
of

∑n
i=1 ξi.

Theorem 3.1. Assume 0 < α1 ≤ α2 < 2, α2 ≥ 1, 0 < c1 ≤ c2, ε =
√
rh = hu, u ∈ (0, 1

2
).

As h → 0 we have
i) if γ ∈ [0, 1), then for any choice of α1, α2 and u as in the assumptions:

∑

i

ξi ≈ nE[ξ1] ≈ T (1− γ)C(1, 1)ε
1+

α2
α1

−α2I{α1>α2u}∪{α1=α2u,α2>1} + ThcA1cA2F0(ε),

where F0(ε) = −ε1−α2I{α1≤α2u,α2>1}+log 1
ε
I{α1≤α2u,α2=1}; C(k,m)

.
= c2

(

α2c1
α1c2

)
k
α1 1

m+
α2
α1

k−α2
>

0, for k,m ≥ 0; and, for m = 1, 2, cAm

.
= cm

1−αm
Iαm 6=1 + cmIαm=1;

ii) if γ = 1 but (α1, α2) 6= (1, 1), and: if {α1 < 1, α2 ≥ 1} ∪ {α1 = 1 < α2} we take
u ∈ ( 1

2+α2−α1
, 1
2
); while if {1 < α1 ≤ α2} we take u ∈ ( 1

α1+α2
, 1
2
); then we have

∑

i

ξi ≈ nE[ξ1] ≈ ThcA1cA2F1(ε),

where F1(ε) = −ε1−α2I{α1<1<α2}+log 1
ε
I{α1<1=α2}−ε1−α2 log 1

ε
I{α1=1<α2}+log2 1

ε
I{α1=α2=1}+

+ε2−α1−α2I{1<α1≤α2};
iii) if γ = α1 = α2 = 1, for any u ∈ (0, 1

2
): with Cm(k) =

cm
k−αm

, for k,m = 1, 2, we have
∑

i

ξi ≈
√

n V ar(ξ1) Uh ≈
√
hε

√

TC1(2)C2(2) Uh.

Remarks. i) Since cAm > 0 for αm ≤ 1 while cAm > 0 for αm > 1 and within F0 we always
have α1 < 1, then we always have cA1cA2Fi(ε) > 0, i = 0, 1.

ii) As for ii) above, if either α1 < 1 or α1 = 1 < α2 then we have α1 < α2 and requiring
that u > 1/(2 + α2 − α1) is possible because 1/(2 + α2 − α1) < 1/2. On the contrary,
the set {1 < α1 ≤ α2} contains the case α1 = α2 in which u > 1/(2 + α2 − α1) = 1/2 is
not admissible. Note that condition u > 1/(2 + α2 − α1) implies u > 1/(α1 + α2) when
α2 > α1 > 1.

iii) The speed of convergence of
∑

i ξi is determined not only by each α1, α2 but also by
the degree γ of dependence of the two small jumps components of Z.

iv) We have that
∑n

i=1 ξi tends to zero much faster when γ = 1 than when γ ∈ [0, 1)
(we obtain that by using Proposition 4.4 and comparing nE[ξ1] in (30) with nE[ξ1] or
√

nV ar(ξ1) in (31), while matching all the sets of (α1, α2)). In other words, the speed at
which the sum of the co-increments ξi tends to zero is much faster when M (1),M (2) are
independent, in fact ξi is led by the small co-jumps and in the independent case the sum
of the small co-jumps is zero (rather than being small).

v) Comparing the speed of
∑

i ξi with
√
h, we reach that

∑

i ξi <<
√
h substantially

when α1 is sufficiently small (and still α2 ≥ 1). In this case the co-increments of M (1),M (2)

are negligible with respect to (wrt) the Browinan co-increments. More precisely, using
Proposition 4.4, Theorem 3.1 and (36) in Appendix 2, defined

α⋆
1
.
=

α2u

α2u− u+ 1/2
∈ (2u, 1), α⋆⋆

1
.
=

1 + 2u(2− α2)

2u
>

1

2u
> 1,
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we reach (see the proof in Appendix 2) that:

{

if γ ∈ [0, 1):
∑

i ξi <<
√
h iff α1 < α⋆

1;

if γ = 1:
∑

i ξi <<
√
h iff α1 < α⋆⋆

1 .
(5)

Since α⋆
1 < 1 < α⋆⋆

1 , the above result means that when the two small jumps components
M (m) are independent, then the impact of their co-increments on the convergence speed of
ˆIC− IC is negligible, wrt the impact

√
h of the Browinan co-increments, for a wider range

of values α1.
Here is the main result of our paper.

Theorem 3.2. If ρ 6≡ 0 and ρ, σ(m), m = 1, 2, are s.t. when h → 0,

∀s ≥ t : s− t ≤ h, then E[|σ(m)
s − σ

(m)
t |2] ≤ K(s− t), m = 1, 2, (6)

with 0 < α1 ≤ α2 < 2, α2 ≥ 1, 0 < c1 ≤ c2, ε =
√
rh = hu, u > 0 such that

1/2 > u >

{

1
2+α2−α1

∨ 1
3−α2

2

if α1 < α2

1
3−α2

2

if α1 = α2
(7)

then, as h → 0, we have

ˆIC − IC ∼
√
hUh +

n
∑

i=1

ξi +
n

∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{
∑

s∈]ti−1,ti]
I
{|∆M

(2)
s |>√

rh}
≥1} (8)

∼
√
h+ (1− γ)ε

1+
α2
α1

−α2 + hε−α2 (9)

∼
√
h I{α2∈[1, 1

2u
)}
[

I{γ=1} + I{γ∈[0,1),α1≤α⋆
1}
]

(10)

+ ε
1+

α2
α1

−α2I{γ∈[0,1)}

[

I{α⋆
1<α1≤α2∈[1, 1

2u
)}+I{α2≥ 1

2u
}I{α2=α1}∪{α1<α2<α1(

1
u
−1)}

]

(11)

+ hε−α2 I{α2≥ 1
2u

}

[

I{γ=1} + I{γ∈[0,1)}I{α1
1
u
≤α2}∪{α1(

1
u
−1)≤α2<α1

1
u
}

]

. (12)

Remarks on the last result.
i) Condition α2 < α1(1/u− 1) is equivalent to u < α1/(α2+α1) and we did not include

it among the ones in (7) because such conditions are required for the convergence of some
terms of I4 (defined within the proof of the Theorem) in ˆIC − IC, while α1/(α2 + α1) is
only a separator to establish whether the leading term is ε1+α2/α1−α2 or hε−α2 . There is
another proof for the convergence of some of the cited terms of I4, which avoids conditions
(7), but it is much longer than the one given in Appendix 1.

ii) Note that α1(1/u− 1) ≤ α2 implies α1 < α2; α1(1/u− 1) > α2 implies α2u < α1. If
α1 < α2, (7) implies that u > 1/4.

iii) Similarly as for
∑n

i=1 ξi, the convergence speed of ˆIC − IC depends both on the
jump activity indices α1, α2 and on the dependence degree γ of the small jumps. This
implies that ˆIC contains information that we could exploit to estimate such a dependence
degree.

Note that when the dependence degree increases (γ decreases) then the leading term of
∑n

i=1 ξi also increases (
∑

i E[ξi] increases and
√

nV ar(ξ1) <<
∑

i E[ξi]), and the estimation

8



error ˆIC − IC increases. An higher leading term of
∑

i ξi means that the average weight
of the small jumps is higher so that the disturbing noise when estimating the Brownian
feature IC is higher. That is: the higher the dependence degree, the higher the disturbing
noise.

iv) Basically, when u is close to 1/2 (i.e. satisfying conditions (7)), if the small jumps
are dependent (γ ∈ [0, 1)), the speed is:

√
h when α1, α2 are small (i.e α1 < α⋆

1 and
α2 < 1/(2u); note that when α2 < 1/(2u) then α1 < α⋆⋆

1 ); ε1+α2/α1−α2 if either the indices
have intermediate values (i.e. α⋆

1 < α1 ≤ α2 < 1/(2u)) or they assume the largest possible
values and either they coincide or they are close (i.e. either α1 = α2 ≥ 1/(2u) or α1 < α2 <
α1(1/u − 1) with still α2 ≥ 1

2u
); hε−α2 when α2 is large and the indices are very different

(i.e. α2 ≥ 1/(2u) and either 2α1 < α1/u ≤ α2 or α1 < α1(1/u− 1) ≤ α2 < α1/u).
If the small jumps are independent (γ = 1), then the speed is:

√
h if α2 < 1/(2u); hε−α2

if α2 ≥ 1/(2u).
iv) For γ = 0 or γ ∈ (0, 1) we have the same cases: in the presence of the parallel

component, the independent component does not modify the speed of convergence. On
the contrary, in the presence of the independent component, the parallel component does
worsen the speed of convergence.

v) When the leading term of
∑n

i=1 ξi is
√

nV ar(ξ1) ∼
√
hε2−α1/2−α2/2

(

by Proposition

4.4, e.g. in the case γ = α1 = α2 = 1; or in the case γ = 1 and 1 < α1 ≤ α2 < 1/(2u),

since then u < 1/(2α2) ≤ 1/(α1 + α2)
)

it holds that
√

nV ar(ξ1)/
√
h → 0, so

∑n
i=1 ξi is

dominated by
√
h and the term

√
hε2−α1/2−α2/2 never appears.

vii) The speed is
√
h even in some cases with α2 ≥ 1 (but α2 < 1/(2u)): any α1 is, if

γ = 1; for α1 sufficiently small (α1 ≤ α⋆
1) if the parallel component is present. In this case

we also have a CLT (see below) and in the univariate case the truncated estimator turns
out to be efficient.

viii) When α1 = α2
.
= α ≥ 1 but the two jump components are not necessarily com-

pletely monotonic, we reach the following speeds of convergence to zero of ˆIC − IC:
(1 − γ)ε2−α if γ ∈ [0, 1);

√
h if γ = 1 and α < 1/(2u) (note that α < α⋆

1 < 1 ≤ α2 is
not in our assumptions); hε−α if γ = 1 and α ≥ 1/(2u).

ix) The univariate case is when α1 = α2 and γ = 0, and the speed turns out to be

ε2−α = r
1−α/2
h , for any α ≥ 1, consistently with [14], where, when α ≥ 1, the estimation

error ˆIV − IV for the is led by the IA and iV jump part.
x) For fixed h, the convergence speed is a function s(γ, α1, α2, u) of our parameters. Such

a function is smooth most of the times, however it has some singularities (as is evident in
Figure 1; see the details in Appendix 2).

xi) The speed in the worst case scenario is approached when γ ∈ [0, 1). Since it is
the same for γ ∈ (0, 1) or γ = 0, let us take γ = 0. For fixed h and u, define R the
region identified by the initial assumptions on α1, α2 and by (7) and A,B,C the subregions
identified respectively in (10), (11) and (12):

R = {(α1, α2) : α1 ∈ (0, 2), α2 ∈ [1, 2), α1 ≤ α2}∩
(

{α1 < α2,
1

2 + α2 − α1

∨ 1

3− α2

2

< u} ∪ {α1 = α2,
1

3− α2

2

< u}
)

,

9
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Figure 1: Graph of s(0, α1, α2, u) on R, for fixed h = 1/1000 and u = 0.495, from two
different points of view, and region R (black). α2 varies within the axes with range [1,2],
α1 varies within the one with range [0,2]

A = R ∩ {α1 ≤ α⋆
1, α2 <

1

2u
}, B = B1 ∪ B2 ∪ B3, B1 = R ∩ {α1 > α⋆

1, α2 <
1

2u
},

B2 = R ∩ {α1 = α2, α2 ≥
1

2u
}, B3 = R ∩ {α1 < α2, α2 ≥

1

2u
, α2 < α1(

1

u
− 1)},

C = R ∩ {α2 ≥
1

2u
} ∩

(

{α1 ≤ α2u} ∪ {α2u < α1 < α2, α2 ≥ α1(
1

u
− 1)}

)

.

Then, noting that 1/(3 − α2/2) < u iff α2 < 2(3 − 1/u), the slowest convergence is ap-
proached by

sup
(α1,α2)∈R

s(0, α1, α2, u) = sup
A∪B∪C

s = sup
B1∪B2

s = sup
α1=α2,1≤α2<2(3−1/u)

ε
1+

α1
α2

−α2 = ε2(
1
u
−2) = h2−4u :

note that h2−4u >>
√
h, and the closer is u to 1/2 the slower is the convergence of ˆIC.

Remark. When α2 < 1/(2u) and either γ = 1 or both γ ∈ [0, 1) and {α1 < α⋆
1}, we have

a CLT for ˆIC − IC. In fact the only leading term of ˆIC − IC is
√
h, which only comes

from the components Y (m) of the processes X(m), so the presence of M (1) and M (2) is not

influential. Thus using also Theorem 3.4 in [16] and Theorem 4.2 in [7], with
st→ denoting

stable convergence in law, we have

ˆIC − IC
√
h
√

ˆAV ar

st→ N ,

whereN is a standard Gaussian r.v. and ˆAV ar = h1− r+l
2

∑n
i=1

∏2
m=1(∆iX

(m))2I{|∆iX(m)|≤√
rh}

−h−1
∑n−1

i=1

∏1
j=0 ∆i+jX

(1)I{|∆i+jX(1)|≤√
rh}

∏1
j=0 ∆i+jX

(2)I{|∆i+jX(2)|≤√
rh},

P→
∫ T

0
(1 + ρ2t )(σ

(1)
t )2(σ

(2)
t )2dt.

10



4 Appendix 1

This appendix contains the proofs of Theorems 3.1 and 3.2 and the statements of the
necessary tools. We begin with giving the tools to prove Theorem 3.1.

Remark 4.1. Note that when k,m ≥ 1 the integral
∫

0≤x,y≤ε
xkymν⊥(dx, dy) is zero, because

the independent components of L have no common jumps. It follows that under assumption
A5, for both k ≥ 1 and m ≥ 1, we have

∫

0≤x,y≤ε

xkymνγ(dx, dy) = (1− γ)

∫

0≤x,y≤ε

xkymdC‖(U1(x), U2(y)).

From the definition of Lebesgue integral and simple computations the following holds true.

Lemma 4.2. i) Given the expression of C‖ and (2), for α1 ≤ α2, 0 < c1 ≤ c2, if ε < e
− 1

α1

then for any Borel functions g s.t. g

(

(

α1u
c1

)− 1
α1 ,

(

α2u
c2

)− 1
α2

)

is Lebesgue-integrable we have

∫

0≤x1,x2≤ε

g(x1, x2)ν‖(dx1, dx2) =

∫ +∞

c2ε
−α2

α2

g

(

(α1u

c1

)− 1
α1 ,

(α2u

c2

)− 1
α2

)

du

ii) for m, k ≥ 1 note that k
α1

+ m
α2

− 1 > 0, and in particular we have

∫

0≤x1,x2≤ε

xk
1x

m
2 ν‖(dx1, dx2) = C(k,m)ε

m+k
α2
α1

−α2 ;

iii) for ℓ, k ≥ 2 and m = 1, 2 we have:

∫

0<xm≤ε

xk
mν⊥(dx1, dx2) =

∫

0<xm≤ε

xk
mν

(m)(dxm) = Cm(k)ε
k−αm ;

for k,m = 1, 2
∫

0≤x1,x2≤ε

xk
1ν‖(dx1, dx2) = C(k, 0)ε

α2
α1

k−α2 ;

∫

0≤x1,x2≤ε

xℓ
2ν‖(dx1, dx2) = C(0, ℓ)εℓ−α2 ;

iv) for m = 1, 2

Aε
m

.
=

∫

ε≤xm≤1

xmν
(m)(dxm) = cAm

[

(1− ε1−αm)Iαm 6=1 + Iαm=1 ln
1

ε

]

.

Recall that for k,m ≥ 0, C(k,m)
.
= c2

(

α2c1
α1c2

)
k
α1 1

m+
α2
α1

k−α2
> 0, and for k,m = 1, 2,

Cm(k) =
cm

k−αm
and cAm

.
= cm

1−αm
Iαm 6=1 + cmIαm=1.

Note that for ε < 1, cAm(1− ε1−αm) > 0 for any αm ∈]0, 2[ and that C(0,m) = c2
m−α2

=

C2(m). The reason why
∫

0≤x1,x2≤ε
xk
1ν‖(dx1, dx2) depends also on α2 is that the jump sizes of

the parallel component of M are connected by x2 = f(x1). If α1 ≤ α2 and 0 < c1 ≤ c2 then

11



for sufficiently small ε we have U1(ε) ≤ U2(ε), thus ε ≥ U−1
1 (U2(ε)) = f−1(ε). It follows

that by binding both x1 ≤ ε and x2 = f(x1) ≤ ε we impose that x1 ≤ f−1(ε)∧ ε = f−1(ε),
which is a bound depending on α2.

Define

ξ̃i
.
=

ξi − E[ξ1]
√

nV ar(ξ1)
.

We know that
∑n

i=1 ξ̃i is always a tight sequence, since ξi are iid and thus
√

nV ar(ξ1) is
the L2 norm of the centered

∑n
i=1(ξi − E[ξi]). In the next theorem (which is proved in

Appendix 2) we compute more explicitly the leading terms of nE[ξ1] and
√

nV ar(ξ1).

Theorem 4.3. Assume A2-A5, 0 < α1 ≤ α2 < 2, α2 ≥ 1, 0 < c1 ≤ c2. Take ε = hu, any
u ∈]0, 1

2
[ and define

x⋆
.
=

1 + 2u−
√

−4(2α2 − 1)u2 + 4u+ 1

2u
∈ (α2u, α2).

Then as ε → 0 the following quotients are tight:
i) if γ ∈ (0, 1) :

∑

i ξi − T (1− γ)C(1, 1)ε
1+

α2
α1

−α2I{α1>α2u}∪{α1=α2u,α2>1} − ThcA1cA2F0(ε)
√
Tε1−α2/2

√

hε2−α1γC1(2)C(0, 2)I{α1≤x⋆} + ε
2
α2
α1 (1− γ)C(2, 2)I{α1≥x⋆}

(13)

ii) If γ = 1:
∑

i ξi − ThcA1cA2F1(ε)√
T
√
hε2−α1/2−α2/2

√

C1(2)C2(2)
, (14)

iii) If γ = 0: with G
.
= C(2, 2)− 2cA1C(1, 2) + c2A1

C(0, 2) we have

∑

i ξi − TC(1, 1)ε
1+

α2
α1

−α2I{α1>α2u}∪{α1=α2u,α2>1} − ThcA1cA2F0(ε)

√
Tε1−α2/2

√

h2c2A1
C(0, 2)I{α1<α2u} + ε

2
α2
α1

[

C(2, 2)I{α1>α2u} +GI{α1=α2u}

]

. (15)

Remarks on the Theorem statement.

• The term −4(2α2 − 1)u2 + 4u + 1 within x⋆ turns out to be strictly positive for all
u ∈ (0, 1

2
), α2 < 2. Also, for any α1, α2 as in the assumptions we have 1+ α2

α1
−α2 > 0.

• The numerator in each quotient is always the difference of
∑

i ξi with the leading
terms of its (tending to zero) mean. There are parameters choices such that E[

∑

i ξi]

(or
√

nV ar(ξ1)) has two asymptotically equivalent leading terms.

• As for the denominator in i), the case α1 = α2 falls within the region α1 ≥ x⋆.
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Proposition 4.4. (See the proof in Appendix 2) Assume 0 < α1 ≤ α2 < 2, α2 ≥ 1,

0 < c1 ≤ c2, u ∈ (0, 1
2
). As h → 0 we have

√
nV ar(ξ1)

nE[ξ1]
→ 0 in the following cases:

i) for γ ∈ [0, 1): for any choices of α1, α2 and u, as in the assumptions;
ii) for γ = 1 : on {α1 < 1, α2 ≥ 1} ∪ {α1 = 1 < α2} iff u ∈ ( 1

2+α2−α1
, 1
2
); on {1 < α1 ≤ α2}

iff u ∈ ( 1
α1+α2

, 1
2
).

We have

√
nV ar(ξ1)

nE[ξ1]
→ +∞ in the following case:

iii) for γ = 1 : on {α1 = α2 = 1}, any u ∈ (0, 1
2
).

Remark 4.5. When

√
nV ar(ξ1)

nE[ξ1]
→ 0 then the tightness of

∑n
i=1 ξ̃i implies that

∑n
i=1 ξi

nE[ξ1]

P→ 1,

that is
∑n

i=1 ξi ∼ nE[ξ1]. Otherwise, if

√
nV ar(ξ1)

nE[ξ1]
→ ∞, the tightness of

∑n
i=1 ξ̃i only allows

us to say that ∀η > 0 ∃Kη : with probability larger than 1 − η, for all sufficiently large n

we have |∑n
i=1 ξi| ≤ K̃η

√

nV ar(ξ1), but
∑n

i=1 ξi could tend to 0 faster than
√

nV ar(ξ1).
However the following CLT (which is proved in Appendix 2) gives us the exact asymptotic
behavior of

∑n
i=1 ξi.

Theorem 4.6. When γ = 1 = α1 = α2: ∀ u ∈ (0, 1
2
), with

d→ denoting convergence in
distribution, we have

∑n
i=1 ξi − nE[ξ1]
√

nV ar(ξ1)

d→ N .

Remark. A CLT for
∑n

i=1 ξi also holds in the case of completely dependent small jumps,
i.e. γ = 0 (see [7], Thm 4.4).

Proof of Theorem 3.1. This is a direct consequence of Theorem 4.3, Proposition 4.4,
Remark 4.5 and Theorem 4.6.

We now proceed to prove Theorem 3.2. Recall that under A1 we have the property (point
iii) within the proof of Theorem 1 in [13]) that a.s.

sup
1≤j≤n

|∆jD
(m)|

√

2hlog 1
h

≤ Km(ω) < ∞, m = 1, 2, (16)

where Km
.
= sups∈[0,T ] |a|s + sups∈[0,T ] |σ|s + 1 are finite random variables.

By using a localization procedure similar to the one in [9] (sec. 3.6.3) we can assume
wlg that the coefficients a(m), σ(m), ρ in (1) are bounded. In particular, we can take Km to
be constants.

In the following denote, for m = 1, 2,

N
(m)
t =

∑

s≤t

I{|∆X
(m)
s |>1}, Ñ

(m)
t =

∑

s≤t

I{|∆X
(m)
s |>√

rh}
, Ṽ

(m)
t =

∑

s≤t

I{|∆M
(m)
s |>√

rh}
, θm = hr

−αm
2

h .

K is a mute name for any positive constants: it keeps the same name passing from one
side to the other of an inequality/equality, even when the constant changes. For U a rv,

we denote ||U ||ℓ = E
1
ℓ [|U |ℓ].
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Remark 4.7. 1. (Lemma 2 in [1]: note that the expansion (24) and the estimate (50),
on which the proof is based, hold for any stable process and any stability index in (0, 2),
thanks to (2.4.6), (2.4.8) in the cited book of Zolotarev and to the expansion of p0(1, x)

at page 89 in [17]) If L̃ is a symmetric stable process with ˜̃Nt =
∑

s≤t ∆L̃I{|∆L̃s|>ε}
and Lévy density F (dx) = c

|x|1+αdx, if θ̃ = hε−α, then:

P
{
∣

∣

∣
∆iL̃−

∑

s∈]ti−1,ti]

∆L̃sI{|∆L̃s|>ε}

∣

∣

∣
>ε

}

+P{|∆iL̃|>ε,∆i
˜̃N=0}+P{|∆iL̃|≤ε,∆i

˜̃N=1}≤ Kθ̃
4
3

2. ([6], ch.3, Prop. 3.7) For any Lévy process V with Lévy measure ν, then
∑

s≤t I{|∆Vs|>ε}
is a Poisson process with parameter tν{|x| > ε} = tU(ε), where U(x) gives the tail
of the jumps sizes measure; it follows that if ν(dx) = a|x|−1−αIx<0 + bx−1−αIx>0 with
a, b ≥ 0 and (a, b) 6= (0, 0), then with p ∈ (0, 1) : P{∑s∈]ti−1,ti]

I{|∆Vs|>ε} = 1} ∼ θ̃,

P{
∑

s∈]ti−1,ti]

I{|∆Vs|>ε} ≥ 2} ∼ θ̃2, P{
∑

s∈]ti−1,ti]

I{|∆Vs|∈(ε(1−p),ε]} = 1} ∼ θ̃((1− p)−α − 1).

Let us recall that each M (m) is given by the small jumps of a one-sided stable process L(m).

Lemma 4.8. (See the proof in Appendix 2). Let L be a one-sided α-stable process with
characteristic triplet (z, 0, c·I{x>0}x

−1−αdx), let H1
.
= (Lt−zt)t, take ε = ε(h) s.t. h/ε(h) →

0, any constant p ∈ (0, 1) s.t. p > |z|h/ε and any q ∈ (0, 1− p). For m = 1, 2, i = 1..n we
have the following.

1. P{∆iN
(m) 6= 0, (∆iM

(m))2 > rh} ≤ K h2

rh
, P (|∆iM

(m)| > K
√
rh) ≤ Kθm.

2. P{|∆iL| > ε,
∑

s∈]ti−1,ti]
I{|∆Ls|>ε} = 0} ≤ Kθ̃4/3 +Kθ̃(q−α − 1).

3. P{|∆iM
(m)| > √

rh(1− p),∆iṼ
(m) = 0} ≤ Kθ

4/3
m +Kθm(q

−αm − 1).

4. P{|∆iH1| ≤ ε(1 + p),
∑

s∈]ti−1,ti]
I{|∆H1s|>ε} = 1} ≤ K[θ̃4/3 + θ̃(1− (1 + 2p)−α)]

P{|∆iL| ≤ ε,
∑

s∈]ti−1,ti]
I{|∆Ls|>ε} = 1} ≤ K[θ̃4/3 + θ̃(1− (1 + 2p)−α)].

5. With ε =
√
rh we have P{|∆iM

(m)| ≤ √
rh(1 + p),∆iṼ

(m) ≥ 1} ≤ Kθ
4/3
m +Kθm(1−

(1 + 2p)−αm).

Lemma 4.9. (See the proof in Appendix 2). Let, for i=1..n, Ai ⊂ Ω be independent on
W (1) and W (2) and s.t. ∀i, P (Ai) ≤ θm. If each σ(j) satisfy (6), then

i) 1
θm

∑n
i=1

∫ ti
ti−1

σ
(1)
s dW

(1)
s

∫ ti
ti−1

σ
(2)
s dW

(2)
s IAi

∼ 1
θm

∑n
i=1 σ

(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)IAi

.

ii) Any P (Ai) is, we have E[|∑n
i=1 σ

(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)IAi

|] ≤ KP (Ai).
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Lemma 4.10. (See the proof in Appendix 2) With
ucp→ denoting convergence in probability

uniformly on [0, T ] and ICt
.
=

∫ t

0
ρsσ

(1)
s σ

(2)
s ds, we have

1

θm

[t/h]
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{∆iṼ (m)≥1}
ucp→ cm

αm

ICt.

Lemma 4.11. (See the proof in Appendix 2) We have

1

θ1

[t/h]
∑

i=1

σ
(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)I{∆iṼ (1)≥1,∆iṼ (2)≥1}

ucp→ (1− γ)
c1
α1

ICt · I{γ∈[0,1)}.

Proof of Theorem 3.2. From now on take a p ∈ (0, 1), h sufficiently small and s.t.

p >
√

h ln 1
h
/
√
rh, q ∈ (0, 1− p). We can write

ˆIC − IC =
4

∑

k=1

Ik, (17)

where

I1 =
[

n
∑

i=1

∆iY
(1)∆iY

(2)I{|∆iY (1)|≤2
√
rh}I{|∆iY (2)|≤2

√
rh} − IC

]

,

I2 =
n

∑

i=1

∆iY
(1)∆iY

(2)
(

I{|∆iX(1)|≤√
rh}I{|∆iX(2)|≤√

rh} − I{|∆iY (1)|≤2
√
rh}I{|∆iY (2)|≤2

√
rh}

)

,

I3 =
n

∑

i=1

(∆iY
(1)∆iM

(2) +∆iY
(2)∆iM

(1))I{|∆iX(1)|≤√
rh}I{|∆iX(2)|≤√

rh},

I4 =
n

∑

i=1

∆iM
(1)∆iM

(2)I{|∆iX(1)|≤√
rh}I{|∆iX(2)|≤√

rh}.

We know that I1/
√
h

st−→ U, with U mixed Gaussian rv ([16]). We are now going to show
that:

I2 ∼
n

∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{|∆iṼ (2)|≥1} ∼ θ2 = hr
−α2

2
h , I3 <<

√
h

and I4 is the sum of
∑n

i=1 ξi with some other terms which however are negligible wrt one of

the terms
√
h, θ2 or

∑n
i=1 ξi. That will prove (8). It then turns out that none of the terms

appearing in (8) is always negligible, while depending on the combination of the parameters
γ, α1, α2 the leading term is different, and we show (10, 11, 12).

Let us start dealing with I2
.
= I2,1 + J , where

I2,1 =
n

∑

i=1

∆iY
(1)∆iY

(2)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}∩{|∆iY (1)|≤2
√
rh,|∆iY (2)|≤2

√
rh}c ,

15



J = −
n

∑

i=1

∆iY
(1)∆iY

(2)
(

I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}c∩{|∆iY (1)|≤2
√
rh,|∆iY (2)|≤2

√
rh}.

We first show that I2,1 << θ2. In fact, for each i, on the set highlighted by the in-
dicator we have |∆iY

(m)| > 2
√
rh for at least one m ∈ {1, 2}, and, using (16), we

have |∆iJ
(m)| + K

√

h ln 1
h

≥ |∆iD
(m) + ∆iJ

(m)| = |∆iY
(m)| > 2

√
rh, which implies

that |∆iJ
(m)| ≥ 2

√
rh(1 − p), thus |∆iJ

(m)| 6= 0. However |∆iX
(m)| ≤ √

rh, and so
|∆iJ

(m) + ∆iM
(m)| − |∆iD

(m)| < |∆iX
(m)| ≤ √

rh implies on one hand that |∆iJ
(m) +

∆iM
(m)| < √

rh(1+ p), and on the other hand that, considering a sufficiently small h, that
1 − |∆iM

(m)| < |∆iJ
(m)| − |∆iM

(m)| < |∆iJ
(m) + ∆iM

(m)| < √
rh(1 + p), and thus, for

sufficiently small h, |∆iM
(m)| > 1−√

rh(1+ p) >
√
rh. It follows that ∀i = 1..n there is an

index mi s.t. {|∆iX
(1)| ≤ √

rh, |∆iX
(2)| ≤ √

rh} ∩ {|∆iY
(1)| ≤ 2

√
rh, |∆iY

(2)| ≤ 2
√
rh}c ⊂

{∆iN
(mi) 6= 0,∆iM

(mi) >
√
rh}, thus, using Lemma 4.8 point 1, P

{

I2,1
θ2

6= 0
}

≤ ∑n
i=1 P{

∆iN
(mi) 6= 0,∆iM

(mi) >
√
rh} ≤ K h

rh
→ 0, which implies that I2,1

θ2

P−→ 0.

As for term J , on {|∆iY
(m)| ≤ 2

√
rh} we have |∆iJ

(m)| − |∆iD
(m)| < |∆iY

(m)| ≤ 2
√
rh

and thus |∆iJ
(m)| < 2

√
rh(1+p) < 1, which implies that ∆iJ

(m) = 0, i.e. ∆iY
(m) = ∆iD

(m).
Thus, calling

Bi = {|∆iX
(1)| ≤ √

rh, |∆iX
(2)| ≤ √

rh}c ∩ {|∆iY
(1)| ≤ 2

√
rh, |∆iY

(2)| ≤ 2
√
rh},

we have J =
∑n

i=1 ∆iY
(1)∆iY

(2)IBi

.
=

∑4
k=2 I2,k, where

I2,2 =
n

∑

i=1

∫ ti

ti−1

a(1)s ds

∫ ti

ti−1

a(2)s ds IBi
, I2,4 =

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s IBi
,

I2,3 =
n

∑

i=1

(

∫ ti

ti−1

a(2)s ds

∫ ti

ti−1

σ(1)
s dW (1)

s +

∫ ti

ti−1

a(1)s ds

∫ ti

ti−1

σ(2)
s dW (2)

s

)

IBi
.

We show that I2,4 is the leading term and it asymptotically behaves as θ2. As for I2,2, by

the boundedness of each a(m) we have E[ |I2,2|
θ2

] ≤ h
θ2

→ 0.

As for I2,3, note that on {|∆iX
(m)| > √

rh, |∆iJ
(m)| = 0} we have |∆iM

(m)|+K
√

h ln 1
h
>

|∆iM
(m)| + |∆iD

(m)| ≥ |∆iD
(m) + ∆iM

(m)| = |∆iX
(m)| > √

rh thus |∆iM
(m)| > √

rh −
K
√

h ln 1
h
>

√
rh(1− p). Using also Lemma 4.8 point 1 and noting that θ1 ≤ θ2, it follows

that

E[|I2,3|]
θ2

≤ K

θ2

n
∑

i=1

h

√

h ln
1

h

(

P{|∆iM
(1)| > K

√
rh}+P{|∆iM

(2)| > K
√
rh}

)

≤ K

√

h ln
1

h
,

which tends to 0.
As for I2,4, firstly we show that

I2,4
θ2

∼ 1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s

(

I{|∆iX(1)|>√
rh} + I{|∆iX(2)|>√

rh}

)

−Bn, (18)
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where Bn ∼ θ1/θ2(1− γ). Let us begin showing that

I2,4
θ2

∼ 1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}c : (19)

as argued just after the expression of I2,1, {|∆iY
(m)| > 2

√
rh} ⊂ {∆iN

(m) 6= 0}, thus

1

θ2

n
∑

i=1

∣

∣

∣

∣

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s

∣

∣

∣

∣

I{|∆iX(m)|≤√
rh,m=1,2}c∩{|∆iY (m)|≤2

√
rh,m=1,2}c ≤

1

θ2

n
∑

i=1

∣

∣

∣

∣

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s

∣

∣

∣

∣

(

I{∆iN(1) 6=0} + I{∆iN(2) 6=0}
)

: (20)

∑n
i=1

∣

∣

∣

∫ ti
ti−1

σ
(1)
s dW

(1)
s

∫ ti
ti−1

σ
(2)
s dW

(2)
s

∣

∣

∣
I{∆iN(m) 6=0}

θ2
≤ K

θ2

n
∑

i=1

h ln
1

h
I{∆iN(m) 6=0}

has expectation bounded by K
h ln 1

h

θ2
= εα2 ln 1

h
→ 0, thus (19) follows. Since now I(A∩B)c =

IAc + IBc − IAc∩Bc , (19) coincides with

1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s

[

I{|∆iX(1)|>√
rh
+I{|∆iX(2)|>√

rh}−I{|∆iX(1)|>√
rh,|∆iX(2)|>√

rh}

]

.

(21)
We now show that

Bn
.
=

1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{|∆iX(1)|>√
rh,|∆iX(2)|>√

rh} ∼
θ1
θ2
(1− γ) : (22)

the left term is asymptotically equivalent to

1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{|∆iṼ (1)|≥1,|∆iṼ (2)|≥1}] (23)

because

1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s

(

I{|∆iX(1)|>√
rh,|∆iX(2)|>√

rh} − I{∆iṼ (1)≥1,∆iṼ (2)≥1}

)

=

1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s

(

I{|∆iX(m)|>√
rh,m=1,2,but ∆iṼ (ℓ)=0for at least one index ℓi}

(24)

−I{∆iṼ (m)≥1,m=1,2,but |∆iX(ℓ)|≤√
rhfor at least one index ℓi}

)

.

On {|∆iX
(ℓi)| > √

rh,∆iṼ
(ℓi) = 0} either ∆iJ

(ℓi) 6= 0 or ∆iJ
(ℓi) = 0. In this last case, as

above (18), |∆iM
(ℓi)| > √

rh(1− p); further also on {∆iṼ
(ℓi) ≥ 1, |∆iX

(ℓi)| ≤ √
rh}, either
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∆iJ
(ℓi) 6= 0 or ∆iJ

(ℓi) = 0, and in this last case we have |∆iM
(ℓi)| = |∆iX

(ℓi) −∆iD
(ℓi)| ≤

|∆iX
(ℓi)|+ |∆iD

(ℓi)| ≤ √
rh(1 +

√

h ln 1
h
/
√
rh) <

√
rh(1 + hη), with 0 < η < 1/2 − u. Thus

the factors within brackets in (24) are

I{|∆iM(ℓi)|>√
rh(1−p),∆iṼ (ℓi)=0,∆iJ(ℓi)=0} − I{|∆iX(ℓi)|≤√

rh,∆iṼ (ℓi)=0,∆iJ(ℓi)=0,|∆iM(ℓi)|>√
rh(1−p)}+

I{|∆iX(ℓi)|>√
rh,∆iṼ (ℓi)=0,∆iJ(ℓi) 6=0} + I{|∆iM(ℓi)|≤√

rh(1+hη),∆iṼ (ℓi)≥1,∆iJ(ℓi)=0}
−I{|∆iX(ℓi)|>√

rh,|∆iM(ℓi)|≤√
rh(1+hη),∆iṼ (ℓi)≥1,∆iJ(ℓi)=0} + I{|∆iX(ℓi)|≤√

rh,∆iṼ (ℓi)≥1,∆iJ(ℓi) 6=0}.

(25)
Firstly, as for (20), the third and sixth terms are negligible. As for the fifth term, since
{|∆iX

(ℓi)| > √
rh} and ∆iJ

(ℓi) = 0, we have ∆iM
(ℓi) >

√
rh(1− p), which leads to

√
rh(1−

p) < |∆iM
(ℓi)| ≤ √

rh(1 + hη). However, by Lemma 6 in [1], we have

P{(1−p)hu < |∆iM
(m)| ≤ hu(1+hη)} ≤ Kh1−αmu+φ, φ

.
= η∧αmu∧ (1−αmu−2η) > 0.

Applying the Hölder inequality with conjugate exponents s1, s2 > 1 to the fifth term we
reach

1

θ2

n
∑

i=1

E

[
∣

∣

∣

∣

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s

∣

∣

∣

∣

I{|∆iX(ℓi)|>√
rh,|∆iM(ℓi)|≤√

rh(1+hη),∆iṼ (ℓi)≥1,∆iJ(ℓi)=0}

]

≤ K

n
∑

i=1

h
P

1
s2 {√rh(1− p) < |∆iM

(ℓi)| ≤ √
rh(1 + hη)}

θ2
≤ Kh

(1−α2u+φ) 1
s2

−(1−α2u),

which, for s2 properly chosen close to 1, tends to 0, since (1− α2u+ φ) > 1− α2u.
As for the second term in (25), we have that on {|∆iX

(ℓi)| ≤ √
rh, |∆iM

(ℓi)| > √
rh(1−

p)} either |∆iM
(ℓi)| > √

rh(1 + hη), which leads to ∆iJ
(ℓi) 6= 0 and thus to a negligible

term, or
√
rh(1− p) < |∆iM

(ℓi)| ≤ √
rh(1+ hη), which also leads, by the same reasoning as

just above, to a negligible term.
Finally, using again the negligibility of 1

θ2

∑n
i=1 |

∫ ti
ti−1

σ
(1)
s dW

(1)
s

∫ ti
ti−1

σ
(2)
s dW

(2)
s |I{∆iJ(ℓi) 6=0},

as for the first and fourth terms in (25) we have

n
∑

i=1

∫ ti
ti−1
σ
(1)
s dW

(1)
s

∫ ti
ti−1
σ
(2)
s dW

(2)
s

θ2

(

I{|∆iM(ℓi)|>√
rh(1−p),∆iṼ (ℓi)=0}∪{|∆iM(ℓi)|≤√

rh(1+hη),∆iṼ (ℓi)≥1}

)

I{∆iJ(ℓi)=0}

∼
n

∑

i=1

∫ ti
ti−1

σ
(1)
s dW

(1)
s

θ2

∫ ti

ti−1

σ(2)
s dW (2)

s

(

I{|∆iM(ℓi)|>√
rh(1−p),∆iṼ (ℓi)=0}∪{∆iṼ (ℓi)≥1,|∆iM(ℓi)|≤√

rh(1+hη)}

)

∼ 1

θ2

n
∑

i=1

σ
(1)
i−1∆iW

(1)σ
(2)
i−1∆iW

(2)
(

I{|∆iM(ℓi)|>√
rh(1−p),∆iṼ (ℓi)=0}∪{∆iṼ (ℓi)≥1,|∆iM(ℓi)|≤√

rh(1+hη)

)

,

and writing E[
∑n

i=1 |ηi|] = E[
∑n

i=1 Ei−1|ηi|], using the independence, the Hölder inequality

for E[|σ(1)
i−1 ∆iW

(1)σ
(2)
i−1∆iW

(2)|], Lemma 4.8 points 3 and 5, and recalling that θ1 ≤ θ2,

18



then ∀p ∈ (0, 1), p > hη >
√

h ln 1
h
/
√
rh, ∀q ∈ (0, 1− p) the expectation of the sum of the

absolute values of the terms in the previous display is dominated by

Kh

θ2

n
∑

i=1

(

P{|∆iM
(ℓi)| > √

rh(1− p),∆iṼ
ℓi = 0}+ P{∆iṼ

ℓi ≥ 1, |∆iM
(ℓi)| ≤ √

rh(1 + p)}
)

≤ K
(θ

4
3
2 + θ2(q

−α2 − 1) + θ2(1− (1 + 2p)−α2))

θ2
→ K(q−α2 − (1 + 2p)−α2).

However if we take p → 0 and q → 1 we reach that the limit in probability of (24) is 0 and
(23) is asymptotically equivalent to (22).

Now, by Lemma 4.9 and Lemma 4.11, (23) has the same rate as

1

θ2

n
∑

i=1

σ
(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)I{|∆iṼ (1)|≥1,|∆iṼ (2)|≥1}] ∼

θ1
θ2
(1− γ),

so (22) is shown, and, by (21), also (18) is true.
Now, by reasoning exactly as for (23) we have

1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{|∆iX(m)|>√
rh} ∼

1

θ2

n
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{∆iṼ (m)≥1},

which, by Lemma 4.10, is asymptotically equivalent to θm
θ2
. In particular

I2,4
θ2

≈ IC
[θ1
θ2

c1
α1

+
c2
α2

− θ1
θ2
(1− γ)

c1
α1

]

:

if α1 < α2 we deduce that I2 ∼ I2,4 ∼ θ2, while if α1 = α2 = α, then I2,4/θ2 ≈ c1/α +
c2/α− (1− γ)c1/α = (c2 + γc1)/α, which is always non zero because γ ≥ 0 and cm > 0.

We now show that I3 in (17) is negligible wrt
√
h. Here we adjust to the bivariate

case the proof given in [5] for the univariate case. I3/
√
h is the sum of two terms of type

1√
h

∑n
i=1 ∆iY

(m)∆iM
(ℓ)I{|∆iX(1)|≤√

rh} I{|∆iX(2)|≤√
rh} with (m, ℓ) ∈ {(1, 2), (2, 1)}, that we

can treat at the same time. The last expression equals

n
∑

i=1

∆iD
(m)∆iM

(ℓ)

√
h

I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh} +
n

∑

i=1

∆iJ
(m)∆iM

(ℓ)

√
h

I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}.

(26)
As for the second term, as already commented just after the definition of I2,1, on {|∆iX

(m)|
≤ √

rh,∆iJ
(m) 6= 0} we have {|∆iM

(m)| > √
rh}, thus, by Lemma 4.8 point 1,

P
{ 1√

h

n
∑

i=1

∆iJ
(m)∆iM

(ℓ)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh} 6=0
}

≤
n

∑

i=1

{∆iJ
(m) 6=0,|∆iM

(m)|>√
rh},
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which tends to 0, thus the second term of (26) tends to 0 in probability.
As for the first term, on {|∆iX

(ℓ)| ≤ √
rh} we have |∆iX

(ℓ)| > |∆iZ
(ℓ)| − |∆iD

(ℓ)| then
|∆iZ

(ℓ)| < |∆iX
(ℓ)| + |∆iD

(ℓ)| ≤ √
rh +

√

h ln 1
h
≤ 2

√
rh, thus the first term is dominated

by
1√
h

n
∑

i=1

∆iD
(m)∆iM

(ℓ)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,|∆iZ(ℓ)|≤2
√
rh} :

since, similarly as above, the terms where ∆iJ
(ℓ) 6= 0 are negligible, and {|∆iZ

(ℓ)| ≤
2
√
rh,∆iJ

(ℓ) = 0} = {|∆iM
(ℓ)| ≤ 2

√
rh,∆iJ

(ℓ) = 0}, we are left with 1√
h

∑n
i=1 ∆iD

(m)·
·∆iM

(ℓ)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,|∆iM(ℓ)|≤2
√
rh,∆iJ(ℓ)=0}. However again the same sum above

with {∆iJ
(ℓ) 6= 0} in place of {∆iJ

(ℓ) = 0} is negligible, because on {|∆iX
(ℓ)| ≤√rh, |∆iM

(ℓ)|
≤ 2

√
rh,∆iJ

(ℓ) 6= 0} we still have |∆iM
(ℓ)| > √

rh. So we remain with

1√
h

n
∑

i=1

∆iD
(m)∆iM

(ℓ)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,|∆iM(ℓ)|≤2
√
rh}. (27)

Now, by Lemma 3.1 in [5] we know that on |∆iM
(ℓ)| ≤ 2

√
rh we have ∆iM

(ℓ) = ∆iM
(ℓ)h −

h
∫ 1

2vh
xν(ℓ)(dx), where ∆iM

(ℓ)h =
∫ ti
ti−1

∫

0<x≤2vh
xµ̃ℓ(dx, ds), and vh is a given sequence

satisfying 0 < vh ≤ r
1/4
h . As a consequence, exactly as in (43) of [5], the component

1√
h

n
∑

i=1

∫ ti

ti−1

a(m)
s ds∆iM

(ℓ)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,|∆iM(ℓ)|≤2
√
rh}

of (27) tends to zero in probability. Now we show the negligibility of

1√
h

n
∑

i=1

∫ ti

ti−1

σ(m)
s dW (m)

s ∆iM
(ℓ)hI{|∆iX(1)|≤√

rh,|∆iX(2)|≤√
rh,|∆iM(ℓ)|≤2

√
rh} :

in fact, by the independence ofW (m) on µ̃(ℓ) also [
∫ ·
0
σ
(m)
s dW

(m)
s ,M (ℓ)h] ≡ 0, and the squared

norm ||.||22 of the last display is dominated by

1

h
E
[(

n
∑

i=1

∫ ti

ti−1

σ(m)
s dW (m)

s ∆iM
(ℓ)h

)2]

=
1

h

n
∑

i=1

E
[(

∫ ti

ti−1

σ(m)
s dW (m)

s

)2(

∆iM
(ℓ)h

)2]

≤ K

h
n · h ln

(1

h

)

· h
∫ r

1/4
h

0

x2ν(ℓ)(dx) ≤ Kr
2−αℓ

4
h log

1

h
→ 0.

Finally we show the negligibility also of

1√
h

n
∑

i=1

∫ ti

ti−1

σ(m)
s dW (m)

s h

∫ 1

2vh

xν(ℓ)(dx)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,|∆iM(ℓ)|≤2
√
rh} :
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in fact recall that
∫ 1

2vh
xν(ℓ)(dx) = cAℓ

[

(1− (2vh)
1−αℓ)Iαℓ 6=1 + ln 1

2vh
Iαℓ=1

]

is positive for all

the values of αℓ ∈ (0, 2), so the norm ||.||1 of the last display is dominated by

√
hcAℓ

[

(1− (2vh)
1−αℓ)Iαℓ 6=1 + ln

1

2vh
Iαℓ=1

]

E
[
∣

∣

∣

n
∑

i=1

∫ ti

ti−1

σ(m)
s dW (m)

s

∣

∣

∣

]

(28)

and noting that if i 6= j then E[
∫ ti
ti−1

σ
(m)
s dW

(m)
s

∫ tj
tj−1

σ
(m)
s dW

(m)
s ] = E[

∫

σ
(m)
s Is∈]ti−1,ti]σ

(m)
s ·

·Is∈]tj−1,tj ]ds] = 0, and that

E
[
∣

∣

∣

n
∑

i=1

∫ ti

ti−1

σ(m)
s dW (m)

s

∣

∣

∣

]

≤ ||
n

∑

i=1

∫ ti

ti−1

σ(m)
s dW (m)

s ||2 =

√

√

√

√E[
n

∑

i=1

(

∫ ti

ti−1

σ
(m)
s dW

(m)
s )2] = O(1).

It follows that (28) is dominated by K
√
h
[

|1− (2vh)
1−αℓ|Iαℓ 6=1 + ln 1

2vh
Iαℓ=1

]

→ 0.

We now deal with I4 of (17). We have

I4 =
n

∑

i=1

∆iM
(1)∆iM

(2)I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}

=
n

∑

i=1

∆iM
(1)∆iM

(2)
[

I{∆iÑ(1)=0,∆iÑ(2)=0} + I{∆iÑ(1)=0,∆iÑ(2)=0}c
]

I{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}

=
n

∑

i=1

∆iM
(1)∆iM

(2)
[

I{∆iÑ(1)=0,∆iÑ(2)=0} − I{∆iÑ(1)=0,∆iÑ(2)=0}∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}c +

I{∆iÑ(1)=0,∆iÑ(2)=0}c∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}

]

.

However, where both ∆iÑ
(1) = 0,∆iÑ

(2) = 0, we have ∆iM
(1)∆iM

(2) = ξi, thus I4 =
∑4

k=1 I4,k, where

I4,2=−
n

∑

i=1

ξiI{∆iÑ(1)=0,∆iÑ(2)=0}c , I4,3=−
n

∑

i=1

ξiI{∆iÑ(1)=0,∆iÑ(2)=0}∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}c

I4,1 =
n

∑

i=1

ξi, I4,4 =
n

∑

i=1

∆iM
(1)∆iM

(2)I{∆iÑ(1)=0,∆iÑ(2)=0}c∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh}.

We are going to show that the terms I4,2, I4,4 are negligible wrt θ2, while I4,3 is negligible
either wrt θ2 or wrt

∑n
i=1 ξi, depending on the parameters values. As for I4,2, using again

that IA∪B = IA + IB − IA∩B, it is sufficient to show that both
∑n

i=1 ξiI{∆iÑ(ℓ)≥1} << θ2, for

ℓ = 1, 2 and
∑n

i=1 ξiI{∆iÑ(1)≥1,∆iÑ(2)≥1} << θ2. Using the independence of ξi on ∆iÑ
(ℓ), we

reach that

Ei−1[ξiI{∆iÑ(ℓ)≥1}] = KE[ξi]θℓ, Ei−1[ξ
2
i I{∆iÑ(ℓ)≥1}] ≤ KE[ξ2i ]θℓ.
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Thus, if, for any ℓ, we call
n

∑

i=1

ξiI{∆iÑ(ℓ)≥1}
θ2

.
=

n
∑

i=1

χi,

we have that ∀t ≥ 0,
∑

ti≤t Ei−1[χi] ≤ K
∑

ti≤t E[ξi] ≤ KnE[ξ1], which, by looking at
Theorem 4.3, tends to zero in all the cases γ ∈ [0, 1]. Further,

∑

ti≤t Ei−1[χi] is positive for all
t, and increasing in t, thus the convergence is also ucp. Moreover ∀t ≥ 0,

∑

ti≤t Ei−1[χ
2
i ] ≤

nE[ξ21 ]/θ2 ≤ nV ar(ξ1)/(Kθ2), with K ∈ (0, 1), having used that, since ξ1 is not constant,
then E2[ξi] < E[ξ2i ]. Using now for nV ar(ξ1) the expressions at the denominators of (30),
(31), (32) it is verified that under our assumptions nV ar(ξ1)/θ2 → 0 in all the cases
γ ∈ [0, 1]. We remark that for the case γ ∈ (0, 1) and α1 ≥ x⋆ condition u > 1/[2(1+α2/α1)]

is needed, however it is implied by our assumption (7). It follows that
∑n

i=1 χi
ucp→ 0, that

is
∑n

i=1 ξiI{∆iÑ(ℓ)≥1} << θ2.

If we now call P{∆iÑ
(1) ≥ 1,∆iÑ

(2) ≥ 1} .
= θ1,2 ≤ θ2, and

n
∑

i=1

χi
.
=

n
∑

i=1

ξiI{∆iÑ(1)≥1,∆iÑ(2)≥1}
θ2

,

we have
∑

ti≤t Ei−1[χi] =
[

t
h

]

E[ξ1]
θ1,2
θ2

≤
[

t
h

]

E[ξ1]
ucp→ 0, and

∑

ti≤t Ei−1[χ
2
i ] ≤ KnV ar(ξ1)/θ2

→ 0, so again
∑n

i=1 χi
ucp→ 0 and

∑n
i=1 ξiI{∆iÑ(1)≥1,∆iÑ(2)≥1} << θ2.

We now show that within I4,3 is negligible either wrt θ2 or wrt
∑n

i=1 ξi. Each term
of the sum is counted only if both ∆iÑ

(j) = 0, j = 1, 2 but |∆iX
(ℓ)| > √

rh for at least

one index ℓ. Note that if ∆iÑ
(ℓ) = 0 then ∆iJ

(ℓ) = 0 and ∆iṼ
(ℓ) = 0. However, as

commented for I2,3, we have {|∆iX
(ℓ)| > √

rh,∆iJ
(ℓ) = 0} ⊂ {|∆iM

(ℓ)| > √
rh(1− p)}, and

P{∆iṼ
(ℓ) = 0, |∆iM

(ℓ)| > √
rh(1 − p)} ≤ P{∆iṼ

(ℓ) = 0, |∆iM
(ℓ)| > √

rh}+ P{|∆iM
(ℓ)| ∈

(
√
rh(1− p),

√
rh]} ≤ θ

4/3
2 + θ2h

φ ∼ θ2h
φ. It follows that

E[|I4,3|] ≤
n

∑

i=1

||ξi||2
√

θ2hφ ≤ K
√

n V ar(ξi)
√
n θ

1
2
2 h

φ
2 = K

√

n V ar(ξi) ε
−α2

2 h
φ
2

.
= an :

looking at (30), (31), (32), depending on the different choices of γ, α1, α2 we have the
following: for γ ∈ (0, 1) and α1 ≤ x⋆, we have an << θ2 iff u > 1/(4 − α1), however this
last condition is implied by (7); for γ ∈ (0, 1) and α1 > x⋆ then, using also Proposition 4.4,
an <<

∑n
i=1 ξi; if γ = 1 then an << θ2 iff u > 1/(4 − α1); if γ = 0 and either α1 < α2u

or (α1 = α2u, α2 = 1) then an << θ2; if γ = 0 and either (α1 = α2u, α2 > 1) or α1 > α2u
then an <<

∑n
i=1 ξi.

Finally we show that I4,4 is negligible wrt to θ2 : we check this when the summands
satisfy the three cases (∆iÑ

(2) = 0,∆iÑ
(1) ≥ 1); (∆iÑ

(2) ≥ 1,∆iÑ
(1) = 0); (∆iÑ

(2) ≥
1,∆iÑ

(1) ≥ 1), which are dealt with similarly. For the indices i such that ∆iÑ
(2) = 0 and

∆iÑ
(1) ≥ 1, then the terms with ∆iJ

(1) 6= 0, as previously, do not contribute to I4,4/θ2,
since |∆iX

(1)| ≤ √
rh, and thus |∆iM

(1)| > √
rh(1 − p). We then remain with the terms

where ∆iJ
(1) = 0 and, since |∆iX

(1)| ≤ √
rh, we have |∆iM

(1)| ≤ √
rh(1+ p). On the other
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hand on {∆iÑ
(2) = 0} we have ∆iJ

(2) = 0, and thus also |∆iM
(2)| ≤ √

rh(1+ p). It follows

that, as for (27), ∆iM
(ℓ) = ∆iM

(ℓ)h − h
∫ 1

2vh
xν(ℓ)(dx). Now

1

θ2
E
[
∣

∣

∣

n
∑

i=1

∆iM
(1)h∆iM

(2)hI{∆iÑ(1)≥1}

∣

∣

∣

]

≤ 1

θ2

∣

∣

∣

∣

∣

∣

n
∑

i=1

∆iM
(1)h∆iM

(2)hI{∆iÑ(1)≥1}

∣

∣

∣

∣

∣

∣

2
=

1

θ2

√

√

√

√

n
∑

i=1

E[(∆iM (1)h∆iM (2)h)2]P{∆iÑ (1) ≥ 1} ≤ 1

θ2

√

nh2r
1−α1

4
−α2

4
h θ1 ≤

√

r
1−α1

4
+ 3

4
α2

h → 0,

having used: the independence among the increments and the independence of the ∆iM
(ℓ)h

with Ñ (1), the Hölder inequality to reach that E[(∆iM
(1)h)2(∆iM

(2)h)2] ≤
∫ ti
ti−1

∫

x≤vh
x2
1ν

(1)(dx1)
∫ ti
ti−1

∫

x≤vh
x2
2ν

(2)(dx2) = h2r
1−α1

4
−α2

4
h . Further

1

θ2
E
[∣

∣

∣

n
∑

i=1

h2

∫ 1

2vh

xν(2)(dx)

∫ 1

2vh

xν(2)(dx)I{∆iÑ(1)≥1}

∣

∣

∣

]

≤Kh
∏

ℓ=1,2

[

|1−(2vh)
1−αℓ |Iαℓ 6=1+Iαℓ=1 ln

1

2vh

]

which in the worst case of α1, α2 > 1 is dominated byKhv1−α1
h v1−α2

h ≤ h1+u
4
(1−α1)+

u
4
(1−α2) →

0. It follows that 1
θ2
E
[
∣

∣

∣

∑n
i=1 ∆iM

(1)∆iM
(2)I{∆iÑ(1)≥1}

∣

∣

∣

]

→ 0, and thus

E
[ 1

θ2

∣

∣

∣

n
∑

i=1

∆iM
(1)∆iM

(2)I{∆iÑ(2)=0,∆iÑ(1)≥1,∆iJ(1)=0}∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,}

∣

∣

∣

]

→ 0.

For the indices i such that ∆iÑ
(2) ≥ 1 and ∆iÑ

(1) = 0, we reason similarly as above and
obtain that

E
[ 1

θ2

n
∑

i=1

|∆iM
(1)∆iM

(2)|I{∆iÑ(2)≥1,∆iJ(2)=0,∆iÑ(1)=0}∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,}

]

→ 0.

For the indices i such that ∆iÑ
(1) ≥ 1,∆iÑ

(2) ≥ 1, then the terms with one ∆iJ
(ℓ) 6= 0,

are negligible and we remain with the terms where both ∆iJ
(ℓ) = 0, thus we reach that

both |∆iM
(ℓ)| ≤ √

rh(1 + p) and, as above,

E
[ 1

θ2

n
∑

i=1

|∆iM
(1)∆iM

(2)|I{∆iÑ(2)≥1,∆iÑ(1)≥1}∩{|∆iX(1)|≤√
rh,|∆iX(2)|≤√

rh,}

]

→ 0,

and the proof of the negligibility of I4,4 wrt θ2 is completed.

We thus obtained that ˆIC − IC ∼
√
h +

∑n
i=1 ξi + θ2. Now we are going to make this

more explicit. In (5) we compared
√
h with

∑n
i=1 ξi. As for θ2 versus

√
h we have that:

θ2 <<
√
h if α2 <

1
2u
; θ2 ∼

√
h if α2 =

1
2u
; θ2 >>

√
h if α2 >

1
2u
.

Comparing now θ2 with
∑n

i=1 ξi, we reach that

when γ = 1 θ2>>
∑n

i=1 ξi for α2=α1=1: if u > 1
4
; for (α1, α2) 6= (1, 1): ∀u∈(0, 1

2
)

when γ ∈ [0, 1) θ2>>
∑n

i=1 ξi for α1≤α2u: any u∈(0, 1
2
); for α2>α1> α2u: iff u> 1

1+
α2
α1

when γ ∈ [0, 1) θ2<<
∑n

i=1 ξi for α1 = α2: any u∈(0, 1
2
).
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It follows that

ˆIC − IC ∼ Iα2≥ 1
2u

(

θ2

[

I{γ=1} + I{γ∈[0,1),α1≤α2u} + I{γ∈[0,1),α2>α1>α2u,u≥ α1
α1+α2

}

]

+
n

∑

i=1

ξi

[

I{γ∈[0,1),α2>α1>α2u,u<
α1

α1+α2
} + I{γ∈[0,1),α2=α1>α2u}

]

)

+Iα2<
1
2u

(

√
h
[

I{γ=1,α1<α⋆⋆
1 } + I{γ∈[0,1),α1≤α⋆

1}

]

+
n

∑

i=1

ξi

[

Iγ=1,α1≥α⋆⋆
1
+ I{γ∈[0,1),α1>α⋆

1}

]

)

.

However: note that u < α1

α1+α2
implies α1 > α2u; if α1 = α2 then α1 > α2u, since α2 > α2u;

α1 < 1/(2u) ⇒ α1 ≤ α⋆⋆
1 . Thus the above display simplifies and (10, 11, 12) follow.

5 Appendix 2

This appendix contains the technical proofs of the following results presented in Section 3
and in Appendix 1: statement (5), Remark x) to Theorem 3.2, Theorem 4.3, Proposition
4.4, Theorem 4.6, Lemma 4.8, Lemma 4.9, Lemma 4.10 and Lemma 4.11.

5.1 Remarks for the main result

Statement (5). Defined

α⋆
1
.
=

α2u

α2u− u+ 1/2
∈ (2u, 1), α⋆⋆

1
.
=

1 + 2u(2− α2)

2u
>

1

2u
> 1,

we have that:

5

{

if γ ∈ [0, 1):
∑

i ξi <<
√
h iff α1 < α⋆

1;

if γ = 1:
∑

i ξi <<
√
h iff α1 < α⋆⋆

1 .
(29)

Proof . We heavily use Proposition 4.4. In the case γ ∈ [0, 1) we have
∑n

i=1 ξi ∼ nE[ξ1].
Using (34) we have that on {α1 ≤ α2u, α2 = 1} ∪ {α1 ≤ α2u, α2 > 1} both α1 < α⋆

1 and
nE[ξ1]/

√
h → 0. On {α1 > α2u} then nE[ξ1]/

√
h → 0 iff α1 < α⋆

1.
In the case γ = 1 then on {α1 < 1, α2 ≥ 1} ∪ {α1 = 1 < α2} we have α1 < α⋆⋆

1 . If
u > 1/(2 + α2 − α1) then

∑n
i=1 ξ ∼ nE[ξ1] and nE[ξ1]/

√
h → 0; if u ≤ 1/(2 + α2 − α1)

then
∑n

i=1 ξi/
√
h ∼

√

nV ar(ξ1)/
√
h → 0. On {1 < α1 ≤ α2}: if u > 1

α1+α2
then

∑n
i=1 ξ ∼ nE[ξ1] <<

√
h iff α1 < α⋆⋆

1 . On the other hand u ≤ 1
α1+α2

is equivalent to

α1 ≤ 1/u−α2, which is less than α⋆⋆
1 , and if u ≤ 1

α1+α2
then

∑n
i=1 ξ ∼

√

nV ar(ξ1) <<
√
h.

Finally, when α1 = α2 = 1 then
∑n

i=1 ξi/
√
h ∼

√

nV ar(ξ1)/
√
h =

√
hε2/

√
h → 0, and

α1 = 1 < α⋆⋆.

Remark x) to Theorem 3.2. For fixed h, the convergence speed is a function
s(γ, α1, α2, u) of our parameters. Such a function is smooth most of the times, however it
has some singularities (as is evident in Figure 1).
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In fact when u ≥ α1/(α1 + α2) and γ ∈ [0, 1) : if α1 6= α2 but the two indices are close
and above 1/(2u), then s = hε−α2 = h1−α2u while at α1 = α2 the function s jumps at
ε2−α2 = h2u−α2u. The jump would disappear if it was u = 1/2.
On the contrary, we have smoothness at α1 = α⋆

1 if α2 < 1/(2u): in fact if α1 is much less
than α2 (case α1 ≤ α⋆

1 < 1 ≤ α2 < 1
2u
) then s = h1/2; for α1 at α⋆

1 we have s =
√
h =

ε
1+

α2
α1

−α2 , and with α1 ∈ (α⋆
1, α2] still is s = ε

1+
α2
α1

−α2 . When γ = 1 we have smoothness at
α2 = 1/(2u): in fact when α2 = 1/(2u) we have

√
h = hε−α2 .

5.2 Proofs of the tools for Theorem 3.1

Theorem 4.3. Assume A2-A5, 0 < α1 ≤ α2 < 2, α2 ≥ 1, 0 < c1 ≤ c2. Take ε = hu, any
u ∈]0, 1

2
[ and define

x⋆
.
=

1 + 2u−
√

−4(2α2 − 1)u2 + 4u+ 1

2u
∈ (α2u, α2).

Then as ε → 0 the following quotients are tight:
i) if γ ∈ (0, 1) :

∑

i ξi − T (1− γ)C(1, 1)ε
1+

α2
α1

−α2I{α1>α2u}∪{α1=α2u,α2>1} − ThcA1cA2F0(ε)
√
Tε1−α2/2

√

hε2−α1γC1(2)C(0, 2)I{α1≤x⋆} + ε
2
α2
α1 (1− γ)C(2, 2)I{α1≥x⋆}

(30)

ii) If γ = 1:
∑

i ξi − ThcA1cA2F1(ε)√
T
√
hε2−α1/2−α2/2

√

C1(2)C2(2)
, (31)

iii) If γ = 0: with G
.
= C(2, 2)− 2cA1C(1, 2) + c2A1

C(0, 2) we have

∑

i ξi − TC(1, 1)ε
1+

α2
α1

−α2I{α1>α2u}∪{α1=α2u,α2>1} − ThcA1cA2F0(ε)

√
Tε1−α2/2

√

h2c2A1
C(0, 2)I{α1<α2u} + ε

2
α2
α1

[

C(2, 2)I{α1>α2u} +GI{α1=α2u}

]

. (32)

Proof . Define

Xε
m

.
=

∫ h

0

∫

|x|≤ε

xµ̃(m)(dx, dt)

and recall Aε
m in iv) of Lemma 4.2: each ξi, i = 1..n, has the same law as (Xε

1 −hAε
1)(X

ε
2 −

hAε
2). For simplicity we write Am in place of Aε

m. We are going to compute E[
∑n

i=1 ξi] and
V ar[

∑n
i=1 ξi], we thus need to compute the moments E[(Xε

1)
k(Xε

2)
m], with k = 2, 1, 0,m =

2, 1, 0. The bivariate process Xε = (Xε
1 , X

ε
2) is Lévy with Lévy measure νε(dx1, dx2) =

I{0≤x1,x2≤ε}νγ(dx1, dx2), and note that, for small ε, 0 ≤ x1, x2 ≤ ε ⇒ x2
1 + x2

2 ≤ 1, so
we reach the desired moments by differentiating the characteristic function ϕ(u1, u2) =
E[eiu1Xε

1+iu2Xε
2 ] = exp{h

∫

(eiu1x1+iu2x2 − 1− iu1x1 − iu2x2) νε(dx1, dx2)}, then evaluating it
at (0, 0), recalling the expression of νγ and using Lemma 4.2. In particular we have:

E
[

Xε
1

]

= E
[

Xε
2

]

= 0
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E
[(

Xε
1

)2]

= h

∫

IR2

x2
1νε(dx1, dx2) = γC1(2)hε

2−α1 + (1− γ)C(2, 0)hε
2
α2
α1

−α2 .

Note that if γ ∈ (0, 1) then as ε → 0 we have

E
[(

Xε
1

)2]

= γC1(2)hε
2−α1 + (1− γ)C(2, 0)hε

2
α2
α1

−α2 ∼ hε2−α1A,

where A = γC1(2)I{α1≤α2} + (1 − γ)C(2, 0)I{α1=α2}. In fact, with φ
.
= α2

α1
∈ [1,+∞), the

quotient ε
2
α2
α1

−α2/ε2−α1ε2φ−α1φ−2+α1 = ε(2−α1)(φ−1) has an exponent which is non-negative
for all α1, α2 ∈ (0, 2), and zero for α1 = α2.

E
[(

Xε
2

)2]

= h

∫

IR2

x2
2νε(dx1, dx2) = hC(0, 2)ε2−α2

E
[

Xε
1X

ε
2

]

= h

∫

IR2

x1x2νε(dx1, dx2) = hε
1+

α2
α1

−α2C(1, 1)(1− γ)

E
[

(Xε
1)

2Xε
2

]

= h

∫

IR2

x2
1x2νε(dx1, dx2) = hε

1+2
α2
α1

−α2C(2, 1)(1− γ)

E
[

Xε
1(X

ε
2)

2
]

= h

∫

IR2

x1x
2
2νε(dx1, dx2) = hε

2+
α2
α1

−α2C(1, 2)(1− γ)

E
[

(Xε
1)

2(Xε
2)

2
]

= 2E2
[

Xε
1X

ε
2

]

+ h

∫

IR2

x2
1x

2
2νε(dx1, dx2) + h2

∫

IR2

x2
1νε(dx1, dx2)·

·
∫

IR2

x2
2νε(dx1, dx2) ∼ (1− γ)hε

2+2
α2
α1

−α2C(2, 2) + hC(0, 2)ε2−α2E
[(

Xε
1

)2]

.

Let us first concentrate on E[
∑

i ξi]. From the above we reach that

E[ξi]=E[Xε
1X

ε
2 ]+h2A1A2=(1−γ)C(1, 1)hε

1+
α2
α1

−α2+cA1cA2h
2
[

(1−ε1−α1)(1−ε1−α2)Iα1,α2 6=1

+ ln
1

ε
(1− ε1−α2)Iα1=1<α2 + (1− ε1−α1) log

1

ε
I{α1<α2=1} + ln2 1

ε
Iα1=α2=1

]

. (33)

Note that since ε = hu, as h → 0 we have E[ξi] → 0.
i) and iii). If γ ∈ [0, 1), then we have the following leading terms in the expression of

E[ξi], when h → 0: when both αm = 1, for sufficiently small h we have hε
1+

α2
α1

−α2 >>

h2 ln2 1
ε
so the leading term is hε

1+
α2
α1

−α2 , coming from E[Xε
1X

ε
2 ]; when α1 = 1 < α2, then

the leading term is still hε
1+

α2
α1

−α2 ; when α1 < α2 = 1, the leading term is hε
1+

α2
α1

−α2 when
u = α2u < α1, while is h

2(1−ε1−α1) log 1
ε
∼ h2 log 1

ε
, coming from h2A1A2, otherwise. When

both αm 6= 1 then under our framework we necessarily have α2 > 1; note that α2u < 1;

if α1 > 1 then the leading term turns out to be hε
1+

α2
α1

−α2 ; If α1 < 1 : hε
1+

α2
α1

−α2 is the

only leading term only if α2u < α1; when α2u = α1 (and still α2 > 1) then hε
1+

α2
α1

−α2 ∼
h2(1− ε1−α1)(1− ε1−α2) ∼ −h2ε1−α2 ; when α2u > α1 then the leading term is −h2ε1−α2 .
However {α1 = α2 = 1} ∪ {α1 = 1 < α2} ∪ {u < α1 < α2 = 1} ∪ {α1 6= 1, α2 > 1, α2u <

α1} = {α1 > α2u} and here is where the only leading term is E
[

Xε
1X

ε
2

]

;
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{α1 = u, α2 = 1}∪{α1 = α2u < 1 < α2} = {α1 = α2u} and here: if α2 > 1 then E
[

Xε
1X

ε
2

]

and h2A1A2 have the same speed hε
1+

α2
α1

−α2 ; if α2 = 1 then only h2A1A2 ∼ h2 log 1
ε
is

leading;
{α1 < α2u < 1 = α2} ∪ {α1 < α2u < 1 < α2} = {α1 < α2u} and here the only leading
term is h2A1A2. Thus

E[
∑

i

ξi] ∼ T (1− γ)C(1, 1)ε
1+

α2
α1

−α2I{α1>α2u}∪{α1=α2u,α2>1} − ThcA1cA2F0(ε). (34)

ii) If γ = 1, then nE[ξ1] = nh2A1A2, and again the leading term is different for different
choices of α1, α2. We have

nE[ξ1] ∼ ThcA1cA2F1(ε). (35)

As for V ar(ξi): in the general case γ ∈ [0, 1], writing Xm for Xε
m, V ar(ξi) is given by

E[X2
1X

2
2 ]− 2hA2E[X2

1X2]− 2hA1E[X1X
2
2 ] +h2A2

2E[X2
1 ] +h2A2

1E[X2
2 ] + 2h2A1A2E[X1X2]+

−E2[X1X2] = h2

∫

0≤x1,x2≤ε

x2
1dν

∫

0≤x1,x2≤ε

x2
2dν + E2[X1X2] + h

∫

0≤x1,x2≤ε

x2
1x

2
2dν+

−2hA2E[X2
1X2]−2hA1E[X1X

2
2 ] +h2A2

2E[X2
1 ] +h2A2

1E[X2
2 ] +2h2A1A2E[X1X2]

.
=

∑8
ℓ=1 Vℓ, (36)

where

V1
.
=h2

∫

0≤x1,x2≤ε

x2
1dν

∫

0≤x1,x2≤ε

x2
2dν; V2

.
=E2[X1X2]; V3

.
=h

∫

0≤x1,x2≤ε

x2
1x

2
2dν;

V4
.
=−2hA2E[X2

1X2];V5
.
=−2hA1E[X1X

2
2 ]; V6

.
= h2A2

2E[X2
1 ];

V7
.
= h2A2

1E[X2
2 ]; V8

.
= 2h2A1A2E[X1X2].

As ε → 0 all these terms tend to zero: we now establish the leading ones and we only keep
them.

i) If γ ∈ (0, 1), we have the following properties:

V1 ∼ h2ε4−α1−α2AC(0, 2) >> V6 ∼ h3c2A2
[(1−ε1−α2)2Iα2 6=1+ln2 1

ε
Iα2=1]Aε2−α1 ; V2 = (1−γ)2·

·C2(1, 1)h2ε
2(

α2
α1

+1−α2), V4 = −2(1− γ)h2cA2 [(1− ε1−α2)Iα2 6=1 + ln
1

ε
Iα2=1]C(2, 1)ε

1+2
α2
α1

−α2

are negligible wrt V3 = (1 − γ)C(2, 2)hε
2+2

α2
α1

−α2 ; recalling that we chose α1 ≤ α2 and we
only are interested in the case where at least α2 ≥ 1, we have that

V8 = 2(1− γ)C(1, 1)cA1cA2h
3ε

1+
α2
α1

−α2

[

(1− ε1−α1)·

·(1− ε1−α2)Iα1,α2 6=1 + (1− ε1−α2) ln
1

ε
Iα1=1<α2 + (1− ε1−α1) ln

1

ε
Iα1<1=α2 + ln2 1

ε
Iα1=α2=1

]
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<< V5 = −2h2cA1 [(1− ε1−α1)Iα1 6=1 + ln
1

ε
Iα1=1](1− γ)C(1, 2)ε

2+
α2
α1

−α2 .

Note that since the terms V2 and V8 are both negligible, here we do not need to distinguish

which is the leading term within V2 + V8 = E[X1X2]
(

E[X1X2] + 2h2A1A2

)

. Finally

V7 = h3c2A1
[(1− ε1−α1)2Iα1 6=1 + ln2 1

ε
Iα1=1]C(0, 2)ε2−α2 << V1,

so we are left with
V ar(ξj) ∼ V1 + V3 + V5.

Now, as h → 0, we have:

V1

V5

→







0 if α2 = α1 = 1
K if α2 = α1 > 1
∞ if α1 < 1 ≤ α2 or α1 = 1 < α2 or 1 < α1 < α2

V3

V5
→







0 if α1 < α2u
K if α1 = α2u
∞ if α1 > α2u

V1

V3
→







0 if α1 ∈ (x⋆, 2)
K if α1 = x⋆

∞ if α1 ∈ (0, x⋆).

By considering the different regions α1 < α2u; α1 = α2u; α1 ∈ (α2u, x⋆); α1 = x⋆; α1 ∈
(x⋆, 2), we find that V5 is never the leading term in V1 + V3 + V5, V1 is the only leading
term for α1 ∈ (0, x⋆); V1 ∼ V3 are leading for α1 = x⋆; and V3 is the only leading term for
α1 ∈ (x⋆, 2). However if α1 ≤ x⋆ then necessarily α1 < α2 so A becomes γC1(2) and

V ar(ξi) ∼ h2γC1(2)C(0, 2)ε4−α1−α2I{α1≤x⋆} + h(1− γ)C(2, 2)ε
2+2

α2
α1

−α2I{α1≥x⋆}

= hε2−α2
[

hε2−α1γC1(2)C(0, 2)I{α1≤x⋆} + ε
2
α2
α1 (1− γ)C(2, 2)I{α1≥x⋆}

]

so, recalling (34), (30) follows.
ii) If γ = 1, then it turns out that V ar(ξ1) is given by V1 + V6 + V7 ≈

≈ V1 = E[X2
1X

2
2 ] = h2

∫

0<x1≤ε

x2
1ν⊥(dx1)

∫

0<x1≤ε

x2
1ν⊥(dx1) = h2ε4−α1−α2C1(2)C2(2), (37)

and thus, recalling (35), (31) is verified.
iii) If γ = 0 then V ar(ξ1) ∼ V3 + V5 + V7 and it turns out that

V ar(ξ1) ∼







V3 if α1 > α2u
V3 ∼ V5 ∼ V7 if α1 = α2u

V7 if α1 < α2u,

and, recalling (34), (32) follows.

Proposition 4.4 Assume 0 < α1 ≤ α2 < 2, α2 ≥ 1, 0 < c1 ≤ c2, u ∈ (0, 1
2
). As h → 0 we

have

√
nV ar(ξ1)

nE[ξ1]
→ 0 in the following cases:
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i) for γ ∈ [0, 1): for any choices of α1, α2 and u, as in the assumptions;
ii) for γ = 1 : on {α1 < 1, α2 ≥ 1} ∪ {α1 = 1 < α2} iff u ∈ ( 1

2+α2−α1
, 1
2
); on {1 < α1 ≤ α2}

iff u ∈ ( 1
α1+α2

, 1
2
).

We have

√
nV ar(ξ1)

nE[ξ1]
→ +∞ in the following case:

iii) for γ = 1 : on {α1 = α2 = 1}, any u ∈ (0, 1
2
).

Proof i) Case γ ∈ (0, 1). We compute

√
nV ar(ξ1)

nE[ξ1]
by using the information (rate of nE[ξ1]

and of
√

nV ar(ξ1)) summarized in (30) in the four different cases 1) α1 ∈ (0, α2u], α2 > 1;
2) α1 ∈ (0, α2u], α2 = 1; 3) α1 ∈ (α2u, x⋆]; 4) α1 ∈ (x⋆, α2]. In the cases 1), 2), 3) we have

α1 ≤ x⋆ < α2, thus α1 6= α2, and we reach that a sufficient condition for

√
nV ar(ξ1)

nE[ξ1]
→ 0 is

u ∈ ( 1
2+α2−α1

, 1
2
). However x⋆ < 2+α2−1/u, thus if α1 ≤ x⋆, then α1 < 2+α2−1/u, which

is equivalent to u > 1
2+α2−α1

. On the other hand, in the case 4) we reach

√
nV ar(ξ1)

nE[ξ1]
→ 0 for

any u ∈ (0, 1/2).
Case γ = 0. We now look at (32). Here we separately study the regions {α1 > α2u};
{α1 = α2u}; {α1 < α2u, α2 > 1}; {α1 < α2u, α2 = 1} and conclude.
ii) and iii). For γ = 1 we look at (31) and we separately study the regions {α1 < 1 < α2};
{α1 < 1 = α2}; {α1 = 1 < α2}; {α1 = α2 = 1}; and {1 < α1 ≤ α2} and reach the
results.

Theorem 4.6 When γ = 1 = α1 = α2: ∀ u ∈ (0, 1
2
), with

d→ denoting convergence in
distribution, we have

∑n
i=1 ξi − nE[ξ1]
√

nV ar(ξ1)

d→ N .

Proof Under γ = 1 = α1 = α2, M
(1) and M (2) are independent, and nV ar(ξ1) ∼ hε2.

By the Lindeberg-Feller Theorem, it is sufficient to show that for all δ > 0 we have
nE[ξ̃21I{|ξ̃1|>δ}] → 0.We begin evaluating P{|ξ̃1| > δ} : by using that we have nE[ξ1]√

nV ar(ξ1)
→ 0,

hA1 = hA2 and Xε
1 = X1 has the same law as Xε

2 = X2, we obtain

P{|ξ̃1| > δ} ≤ P
{

|ξ1| >
δ

2

√

nV ar(ξ1)
}

= P
{

|M ′(1)
h ||M ′(2)

h | > δ

2

√

nV ar(ξ1)
}

≤ P
{

|X1||X2|+ hA2|X1|+ hA1|X2|+ h2A1A2 >
δ

2

√

nV ar(ξ1)
}

≤

P
{

|X1||X2| >
δ

8

√

nV ar(ξ1)
}

+2P
{

hA2|X1| >
δ

8

√

nV ar(ξ1)
}

+P
{

h2A1A2 >
δ

8

√

nV ar(ξ1)
}

.

(38)

Now, for sufficiently small h the last term is 0, because h2A1A2√
nV ar(ξ1)

=
h2 log2 1

ε√
hε

= h
3
2
−u log2 1

ε
→

0. We now evaluate the other 2 probabilities in (38) to establish their magnitude orders:
since X1X2 is centered, by the Čebyšëv inequality, used that α1 = 1, we have

P
{

|X1X2| >
δ

8

√

nV ar(ξ1)
}

≤ V ar
[

|X1X2|
]

Khε2
=

E2X2
1

Khε2
=

(

hε2−α1
)2

Khε2
= Kh;
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P
{

hA2|X1| >
δ

8

√

nV ar(ξ1)
}

=P
{

|X1| >
δ

8

hu− 1
2

log 1
ε

}

≤ K
V ar(|X1|)

h2u−1
log2

1

ε
≤ Kh2−u log2

1

ε
.

Noting that
h2−u log2 1

ε

h
→ 0, it follows that P{|ξ̃1| > δ} ≤ Kh. Now, for any conjugate

exponents p, q,

nE[ξ̃21I{|ξ̃1|>δ}] ≤ nE
1
p [ξ̃2p1 ]P

1
q {|ξ̃1| > δ} ≤ KnE

1
p [ξ̃2p1 ]h

1
q .

We now evaluate

E[ξ̃2p1 ] = E
[( ξ1

√

nV ar(ξ1)
− E[ξ1]
√

nV ar(ξ1)

)2p]

≤ KE
[( ξ1

√

nV ar(ξ1)

)2p]

+K
( E[ξ1]
√

nV ar(ξ1)

)2p

.

From the expression of nE[ξ1] above (35) and the given one for
√

nV ar(ξ1) the last term
equals

(

h
1
2
−u log2

1

ε

)2p

On the other hand

E
[ ξ2p1
(nV ar(ξ1))p

]

≤ K
(E[(X1X2)

2p]

(nV ar(ξ1))p
+ 2

E[(hA2)
2pX2p

1 ]

(nV ar(ξ1))p
+

E[(h2A1A2)
2p]

(nV ar(ξ1))p

)

:

the last term contributes with
(

h3/2−u log2 1
ε

)2p

; the second term, by the Burkhölder-Davis-

Gundy inequality and recalling that α1 = 1, is dominated by

K

(

h2 log2 1
ε

∫ ti
ti−1

∫ ε

0
x2ν(1)(dx)

hε2

)p

=
(

h2−u log2
1

ε

)p

;

and the first term is

E[X2p
1 X2p

2 ]

(hε2)p
=

E2[X2p
1 ]

(hε2)p
≤ K

(hε)2p

(hε2)p
= Khp.

Thus

E[ξ̃2p1 ] ≤ K
((

h3/2−u log2
1

ε

)2p

+
(

h2−u log2
1

ε

)p

+hp+
(

h
1
2
−u log2

1

ε

)2p)

∼
(

h
1
2
−u log2

1

ε

)2p

.

It follows that by choosing q sufficiently close to 1, and precisely q < 1/(2u), we have

nE
1
p [ξ̃2p1 ]h

1
q ≤ Kn

(

h
1
2
−u log2

1

ε

)2p· 1
p
h

1
q ∼ Kh

1
q
−2u log4

1

ε
→ 0.
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5.3 Proof of the tools for Theorem 3.2

Under the assumptions of Theorem 3.2 the following Lemmas holds true.
Lemma 4.8 Let L be a one-sided α-stable process with characteristic triplet (z, 0, c ·
I{x>0}x

−1−αdx), let H1
.
= (Lt − zt)t, take ε = ε(h) s.t. h/ε(h) → 0, any constant p ∈ (0, 1)

s.t. p > |z|h/ε and any q ∈ (0, 1− p). For m = 1, 2, i = 1..n we have the following.

1. P{∆iN
(m) 6= 0, (∆iM

(m))2 > rh} ≤ K h2

rh
, P (|∆iM

(m)| > K
√
rh) ≤ Kθm.

2. P{|∆iL| > ε,
∑

s∈]ti−1,ti]
I{|∆Ls|>ε} = 0} ≤ Kθ̃4/3 +Kθ̃(q−α − 1).

3. P{|∆iM
(m)| > √

rh(1− p),∆iṼ
(m) = 0} ≤ Kθ

4/3
m +Kθm(q

−αm − 1).

4. P{|∆iH1| ≤ ε(1 + p),
∑

s∈]ti−1,ti]
I{|∆H1s|>ε} = 1} ≤ K[θ̃4/3 + θ̃(1− (1 + 2p)−α)]

P{|∆iL| ≤ ε,
∑

s∈]ti−1,ti]
I{|∆Ls|>ε} = 1} ≤ K[θ̃4/3 + θ̃(1− (1 + 2p)−α)].

5. With ε =
√
rh we have P{|∆iM

(m)| ≤ √
rh(1 + p),∆iṼ

(m) ≥ 1} ≤ Kθ
4/3
m +Kθm(1−

(1 + 2p)−αm).

Proof . Point 1. By the independence of N (m), M (m) and using the Markov inequality for

P{(∆iM
(m))2 > rh}, we reach P{∆iN

(m) 6= 0, (∆iM
(m))2 > rh} ≤ Kh

h
∫ 1
0 x2ν(m)(dx)

rh
= K h2

rh
.

The second inequality is a trivial consequence of Lemma 6 in [1], asM (m) is a semimartingale
following the same model as X(m) in (1) with a ≡ σ ≡ J (m) ≡ 0.

Point 2: the idea here is to look at H1 as half of a symmetric stable process. More
precisely, take an independent and identically distributed copy H2 of H1, then L̃ = H1−H2

is a symmetric α-stable process. Let us fix any p as in the assumptions and call L̃′,
and H ′

ℓ the processes L̃, Hℓ deprived of their jumps bigger than ε, e.g. H ′
ℓt = Hℓt −

∑

s≤t∆H1sI{|∆H1s|>ε}. Note that if |∆iL| > ε then |∆iH1| = |∆iL − zh| > |∆iL| − |z|h >
ε − |z|h > ε(1 − p), and also that the jumps of L and H1 are the same and are positive,
thus

P
{

|∆iL| > ε,
∑

s∈]ti−1,ti]

I{∆Ls>ε} = 0
}

≤ P
{

|∆iH1| > ε(1− p),
∑

s∈]ti−1,ti]

I{∆H1s>ε} = 0
}

= P
{

|∆iH
′
1| > ε(1− p),

∑

s∈]ti−1,ti]

I{∆H1s>ε} = 0
}

≤ P
{

|∆iH
′
1| > ε(1− p)

}

(39)

= P
{

|∆iH
′
1| > ε(1−p),∆iH

′
2 ≤ ε(1−p−q)

}

+P
{

|∆iH
′
1| > ε(1−p),∆iH

′
2 > ε(1−p−q)

}

.

Now on the first set of the last display we have |∆iL̃
′| = |∆iH

′
1−∆iH

′
2| > |∆iH

′
1|−|∆iH

′
2| >

ε(1− p)− ε(1− p− q) = εq, while the probability of the second set, by the independence of
the H ′

ℓ, is P{|∆iH
′
1| > ε(1− p)}P{|∆iH

′
2| > ε(1− p− q)} which is dominated by Kθ̃2 by

Lemma 6 in [1], applied with a ≡ σ ≡ J ≡ 0, Mt =
∫ t

0

∫ ε

0
xµ̃(dx)− t

∫ 1

ε
xν(dx), ν the Lévy

measure of L and µ̃ the compensated jump measure of L. It follows that (39) is dominated
by

P{|∆iL̃
′| > εq}+Kθ̃2 : (40)
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note that P{|∆iL̃
′| > εq} = P

{

|∆iL̃
′| > εq,∆i

˜̃N = 0
}

+ P
{

|∆iL̃
′| > εq,∆i

˜̃N ≥ 1
}

: by

the independence of ∆iL̃
′ on ∆i

˜̃N and using Remark 4.7, points 1 and 2, we have

P
{

|∆iL̃
′| > εq,∆i

˜̃N ≥ 1
}

= P{|∆iL̃
′| > εq}P

{

∆i
˜̃N ≥ 1

}

≤ Kθ̃7/3.

Therefore (40) is dominated by Kθ̃7/3 + P{|∆iL̃
′| > εq,∆i

˜̃N = 0} + Kθ̃2; noting that
θ̃7/3 << θ̃2, since q < 1, the last display is dominated by

P
{

|∆iL̃
′| > εq,

∑

s∈]ti−1,ti]

I{|∆L̃s|>εq} = 0
}

+ P
{

∑

s∈]ti−1,ti]

I{|∆L̃s|∈(εq,ε]} ≥ 1
}

+Kθ̃2 : (41)

using Remark 4.7, point 2 with εq in place of ε, Remark 4.7 point 1 and the fact that
θ̃2 << θ̃4/3, we reach our thesis.

Point 3 is a consequence of point 2. Let us denote L(m) with L. We have

P{|∆iM
(m)| > √

rh(1− p),∆iṼ
(m) = 0} = P{|∆iM

(m)| > √
rh(1− p),∆iṼ

(m) = 0,

∑

s∈]ti−1,ti]

I{∆Ls>1} = 0}+ P{|∆iM
(m)| > √

rh(1− p),∆iṼ
(m) = 0,

∑

s∈]ti−1,ti]

I{∆Ls>1} ≥ 1}

≤ P{|∆iH
′
1| >

√
rh(1− p),

∑

s∈]ti−1,ti]

I{∆H1s>
√
rh} = 0}+ P{

∑

s∈]ti−1,ti]

I{∆Ls>1} ≥ 1}

the first term is bounded by the one in (39) with ε =
√
rh, while the second one involves the

Poisson process counting the jumps of L bigger than 1 within ]ti−1, ti], which has parameter
hU(1), thus the thesis follows.

Point 4. With the same notations as at point 2, we have

P{|∆iH1| ≤ ε(1 + p),
∑

s∈]ti−1,ti]

I{|∆H1s|>ε} = 1} = P{|∆iH1| ≤ ε(1 + p),
∑

s∈]ti−1,ti]

I{|∆H1s|>ε} = 1,

|∆iH2| > εp}+ P{|∆iH1| ≤ ε(1 + p),
∑

s∈]ti−1,ti]

I{|∆H1s|>ε} = 1, |∆iH2| ≤ εp} : (42)

the first term of the right hand side (rhs) is dominated by P{∑s∈]ti−1,ti]
I{|∆H1s|>ε} =

1, |∆iH2| > εp} = P{∑s∈]ti−1,ti]
I{|∆H1s|>ε} = 1}P{|∆iH2| > εp} ≤ Kθ̃2, having used

the independence and Remark 4.7 points 1 and 2. As for the second term, on {|∆iH1| ≤
ε(1+p), |∆iH2| ≤ εp} we have |∆iL̃| = |∆iH1−∆iH2| ≤ |∆iH1|+ |∆iH2| ≤ ε(1+p)+εp =
ε(1 + 2p). Moreover, by their independence, the two Hℓ have no common jumps, so
a jump of H2 cannot neutralize any jumps of H1, thus

∑

s∈]ti−1,ti]
I{|∆H1s|>ε} = 1 ⇒

∑

s∈]ti−1,ti]
I{|∆L̃s|>ε} ≥ 1. Since P{∑s∈]ti−1,ti]

I{|∆L̃s|>ε} ≥ 2} ≤ Kθ̃2, it follows that (42) is
dominated by

Kθ̃2 + P{|∆iL̃| ≤ ε(1 + 2p),
∑

s∈]ti−1,ti]

I{|∆L̃s|>ε} = 1}

≤ Kθ̃2+P{|∆iL̃| ≤ ε(1+2p),
∑

s∈]ti−1,ti]

I{|∆L̃s|>ε(1+2p)} = 1}+P{
∑

s∈]ti−1,ti]

I{|∆L̃s|∈(ε,ε(1+2p)} = 1}
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and the first thesis follows by Remark 4.7 point 1, with ε(1+ 2p) in place of ε, point 2 and
the fact that θ̃2 << θ̃4/3. The second inequality at point 4 follows from the previous one.
In fact if |∆iL| ≤ ε then |∆iH1| = |∆iL− zh| ≤ |∆iL|+ |z|h < ε(1 + p), further L and H1

do exactly the same jumps, thus

P{|∆iL| ≤ ε,
∑

s∈]ti−1,ti]

I{|Ls|>ε} = 1} ≤ P{|∆iH1| ≤ ε(1 + p),
∑

s∈]ti−1,ti]

I{|H1s|>ε} = 1}.

Point 5 follows from point 4. Let us again denote L(m) with L. We have

P{|∆iM
(m)| ≤ √

rh(1 + p),∆iṼ
(m) ≥ 1} = (43)

P{|∆iM
(m)| ≤ √

rh(1 + p),∆iṼ
(m) ≥ 1,

∑

s∈]ti−1,ti]

I{|∆Ls|>1} = 0}+

P{|∆iM
(m)| ≤ √

rh(1 + p),∆iṼ
(m) ≥ 1,

∑

s∈]ti−1,ti]

I{|∆Ls|>1} ≥ 1} :

the second term of the rhs is bounded by Kh, as at Point 3. On the set at the first term
the jumps of M coincide with the jumps of L, and the very M coincides with H1. Thus
the last display is dominated by

P{|∆iH1| ≤
√
rh(1 + p),

∑

s∈]ti−1,ti]

I{|∆H1s|>
√
rh} ≥ 1,

∑

s∈]ti−1,ti]

I{|∆Ls|>1} = 0}+Kh ≤

P{|∆iH1| ≤
√
rh(1 + p),

∑

s∈]ti−1,ti]

I{|∆H1s|>
√
rh} = 1}+ P{

∑

s∈]ti−1,ti]

I{|∆H1s|>
√
rh} ≥ 2}+Kh,

and the thesis follows by Lemma 4.8, point 4, Remark 4.7, point 1 and Kh << θm.

Lemma 4.9 Let, for i=1..n, Ai ⊂ Ω be independent on W (1) and W (2) and s.t. ∀i, P (Ai) ≤
θm. If each σ(j) satisfy (6), then

i) 1
θm

∑n
i=1

∫ ti
ti−1

σ
(1)
s dW

(1)
s

∫ ti
ti−1

σ
(2)
s dW

(2)
s IAi

∼ 1
θm

∑n
i=1 σ

(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)IAi

.

ii) Any P (Ai) is, we have E[|∑n
i=1 σ

(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)IAi

|] ≤ KP (Ai).

Proof i) Denote σi := σti . We have σs = σi−1 + (σs − σi−1), thus

1

θ2

n
∑

i=1

[

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s − σ
(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)

]

IAi
= (44)

1

θm

n
∑

i=1

[

σ
(1)
i−1∆iW

(1)

∫ ti

ti−1

(σ(2)
s − σ

(2)
i−1)dW

(2)
s +

∫ ti

ti−1

(σ(1)
s − σ

(1)
i−1)dW

(1)
s σ

(2)
i−1∆iW

(2)+

∫ ti

ti−1

(σ(1)
s − σ

(1)
i−1)dW

(1)
s

∫ ti

ti−1

(σ(2)
s − σ

(2)
i−1)dW

(2)
s

]

IAi
.
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Firstly note that

E
[

∫ ti

ti−1

(σ(m)
s − σ

(m)
i−1)

2ds |Ai

]

=
E
[

∫ ti
ti−1

(σ
(m)
s − σ

(m)
i−1)

2dsIAi

]

P (Ai)
≤
E
[

∫ ti
ti−1

(σ
(m)
s − σ

(m)
i−1)

2ds
]

P (Ai)

is bounded by Kh/P (Ai). It follows that

E
[

|σ(1)
i−1∆iW

(1)

∫ ti

ti−1

(σ(2)
s −σ

(2)
i−1)dW

(2)
s |

]

= E
[

|σ(1)
i−1∆iW

(1)

∫ ti

ti−1

(σ(2)
s −σ

(2)
i−1)dW

(2)
s |

∣

∣

∣
Ai

]

P (Ai)

≤
√

E
[

|σ(1)
i−1∆iW (1)|2

∣

∣

∣
Ai

]

√

E

[

(

∫ ti

ti−1

(σ
(2)
s − σ

(2)
i−1)dW

(2)
s

)2∣
∣

∣
Ai

]

P (Ai); (45)

since W (m) is independent on Ai, its law under P and under P (· | Ai) is the same, thus it
keeps its martingale property also under P (· | Ai). However, any bounded càdlàg integrand

η is, the stochastic integral η.W (m) is a martingale under P (·| Ai), thusE
[

|
∫ ti
ti−1

ηsdW
(m)
s |2

∣

∣

∣
Ai

]

= E
[

∫ ti
ti−1

η2sds
∣

∣

∣
Ai

]

, and (45) coincides with

√

E
[

(σ
(1)
i−1)

2h
∣

∣

∣
Ai

]

√

E

[
∫ ti

ti−1

(σ
(2)
s − σ

(2)
i−1)

2ds
∣

∣

∣
Ai

]

P (Ai) ≤ K
√
h

√

∫ ti

ti−1

h

P (Ai)
dsP (Ai),

which equals Kh
√

hP (Ai). Therefore the norm ||.||1 of the first term in the rhs of (44) is
bounded by

1

θm

n
∑

i=1

E

[

∣

∣

∣
σ
(1)
i−1∆iW

(1)

∫ ti

ti−1

(σ(2)
s − σ

(2)
i−1)dW

(2)
s

∣

∣

∣
IAi

]

≤ K
1

θm
nh

√

hP (Ai) ≤ K

√

h

θm
→ 0.

We reach the same result also for the second term in the rhs of (44). Finally

1

θm

n
∑

i=1

E
[∣

∣

∣

∫ ti

ti−1

(σ(1)
s − σ

(1)
i−1)dW

(1)
s

∫ ti

ti−1

(σ(2)
s − σ

(2)
i−1)dW

(2)
s IAi

∣

∣

∣

]

≤

1

θm

n
∑

i=1

√

E
[(

∫ ti

ti−1

(σ
(1)
s − σ

(1)
i−1)dW

(1)
s

)2∣
∣

∣
Ai

]

√

E

[
∫ ti

ti−1

(σ
(2)
s − σ

(2)
i−1)

2ds
∣

∣

∣
Ai

]

P (Ai) ≤

K
1

θm

n
∑

i=1

h2

P (Ai)
P (Ai) ≤ Kεαm → 0.

ii) Similarly, E[|∑n
i=1 σ

(1)
i−1∆iW

(1)σ
(2)
i−1∆iW

(2)IAi
|] =

∑n
i=1 E

[

|σ(1)
i−1∆iW

(1)σ
(2)
i−1∆iW

(2)|
∣

∣

∣
Ai

]

P (Ai) ≤ K
∑n

i=1 hP (Ai) ≤ KP (Ai).
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Lemma 4.10 With
ucp→ denoting convergence in probability uniformly on [0, T ] and ICt

.
=

∫ t

0
ρsσ

(1)
s σ

(2)
s ds, we have

1

θm

[t/h]
∑

i=1

∫ ti

ti−1

σ(1)
s dW (1)

s

∫ ti

ti−1

σ(2)
s dW (2)

s I{∆iṼ (m)≥1}
ucp→ cm

αm

ICt.

Proof By the independence of each W (j) on Ṽ (m), using Lemma 4.9 and Remark 4.7 point
2, we have that the left hand side (lhs) of the above display has the same asymptotic
behavior (in the ∼ sense) as

1

θm

[t/h]
∑

i=1

σ
(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)I{∆iṼ (m)≥1}

.
=

[t/h]
∑

i=1

ηi.

However we have

[t/h]
∑

i=1

Ei−1[ηi] =
1

θm

[t/h]
∑

i=1

σ
(1)
ti−1

σ
(2)
ti−1

Ei−1[∆iW
(1)∆iW

(2)]Pi−1{∆iṼ
(m) ≥ 1} :

Ei−1[∆iW
(1)∆iW

(2)] = Ei−1[
∫ ti
ti−1

ρsds], and Pi−1{∆iṼ
(m) ≥ 1} = 1 − e−λmh with λm =

cm
r
−αm

2
h

αm
, and |1−e−λmh−λmh| ≤ Kθ2m, thus the last display has the same limit in probability

as

1

θm

[t/h]
∑

i=1

σ
(1)
i−1σ

(2)
i−1Ei−1

[

∫ ti

ti−1

ρsds
]

λmh. (46)

Further, 1
θm

E
[

∑[t/h]
i=1 |σ(1)

ti−1
σ
(2)
ti−1

| ·
∣

∣

∣
Ei−1

[

∫ ti
ti−1

ρsds
]

− ρti−1

∣

∣

∣
· λmh

]

≤ K

θm
E
[

[t/h]
∑

i=1

|σ(1)
ti−1

σ
(2)
ti−1

|Ei−1

[

∫ ti

ti−1

|ρs − ρti−1
|ds

]

λmh
]

≤ Knh2θm
θm

→ 0,

and this implies that (46) has the same limit in probability as

1

θm

[t/h]
∑

i=1

σ
(1)
ti−1

σ
(2)
ti−1

ρti−1
h
cm
αm

θm
P→ cm

αm

IC.

However by separating σ
(1)
i−1σ

(2)
i−1ρi−1 = (σ

(1)
i−1σ

(2)
i−1ρi−1)

+ − (σ
(1)
i−1σ

(2)
i−1ρi−1)

− and applying the
reasoning indicated in [9], just before (3.5), we reach that such a convergence is also ucp.
Further

[t/h]
∑

i=1

Ei−1[η
2
i ] =

1

θ2m

[t/h]
∑

i=1

(σ
(1)
ti−1

σ
(2)
ti−1

)2Ei−1[(∆iW
(1))2(∆iW

(2))2]Pi−1{∆iṼ
(m) ≥ 1} :
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by using the expression of W (2) given after (1) we find that Ei−1[(∆iW
(1))2(∆iW

(2))2] ≤
Kh2, thus

[t/h]
∑

i=1

Ei−1[η
2
i ] ≤ K

1

θ2m
hθm

[t/h]
∑

i=1

(σ
(1)
ti−1

σ
(2)
ti−1

)2h ∼ h

θm

∫ t

0

(σ(1)
s σ(2)

s )2ds ∼ εαm → 0.

Thus, by Lemma 4.2 in [9], the thesis follows.

Lemma 4.11 We have

1

θ1

[t/h]
∑

i=1

σ
(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)I{∆iṼ (1)≥1,∆iṼ (2)≥1}

ucp→ (1− γ)
c1
α1

ICt · I{γ∈[0,1)}.

Proof Let us start by proving that

P{∆iṼ
(1) ≥ 1,∆iṼ

(2) ≥ 1} ≈ (1− γ)θ1
c1
α1

I{γ∈[0,1)}. (47)

In fact, with ε =
√
rh, such a probability equals P

{

µ(]ti−1, ti] × (ε, 1] × (ε, 1]) ≥ 1
}

=

1 − e−λh ≈ λh, where λ = νγ(]ti−1, ti] × (ε, 1] × (ε, 1]) ≥ 1}). In view of (3) and of
the shape of f(x) due to our choice of the parameters (see figure 1), we have λ = (1 −
γ)

∫

(ε,1]×(ε,1]
1ν‖(dx1, dx2) : ν‖ only weights the points (x1, x2) with x2 = f(x1), and x1 ∧

f(x1) > ε means that x1 > f−1(ε) ∨ ε = ε, while x1 ∨ f(x1) ≤ 1 means that x1 ≤
f−1(1) ∧ 1 = f−1(1), thus λ = (1 − γ)ν1((ε, f

−1(1)]) = (1 − γ)
[

c1
ε−α1

α1
− c2

α2

]

, having used

that f = U−1
2 ◦ U1. However if γ 6= 1 then the leading term of P{∆iṼ

(1) ≥ 1,∆iṼ
(2) ≥ 1}

is (1− γ)θ1
c1
α1
. If γ = 1 then λ = 0, and (47) is verified.

Let us now define

[t/h]
∑

i=1

1

θ1
σ
(1)
ti−1

∆iW
(1)σ

(2)
ti−1

∆iW
(2)I{∆iṼ (1)≥1,∆iṼ (2)≥1} =

[t/h]
∑

i=1

χi :

by the independence of each W (m) on each Ṽ (ℓ), we have

[t/h]
∑

i=1

Ei−1[χi] ≈
[t/h]
∑

i=1

σ
(1)
ti−1

σ
(2)
ti−1

Ei−1

[

∫ ti

ti−1

ρsds
]

(1− γ)
c1
α1

I{γ∈[0,1)}
P→ (1− γ)

c1
α1

ICt · I{γ∈[0,1)};

as in the previous Lemma, we reach that such a convergence is also ucp. Further,
∑[t/h]

i=1 Ei−1[χ
2
i ] ≤ K hθ1

θ21
≤ Kεα1 → 0, so, by Lemma 4.2 in [9], the thesis follows.
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