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Università degli Studi di Firenze

via delle Pandette 9, 50127, Firenze

e-mail: michele.gori@unifi.it

June 16, 2014

Abstract

Assuming that alternatives are three or more, we prove that if the set of anonymous, neutral and

reversal symmetric minimal majority rules is nonempty, then it has at least two elements. We

propose then further principles linked to equity and fairness that can be used to exclude some

rules in that set and we show that, when alternatives are three, suitable combinations of those

principles leads to identify a unique rule.
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order; group theory.

JEL classification: D71

1 Introduction

Consider a committee whose purpose is to provide a strict ranking of a given family of alternatives.
Usually, committee members reveal their opinions on alternatives only after having chosen a proce-
dure to get the final social outcome from their individual preferences. The determination of such a
procedure, also called rule, is normally based on a preliminary agreement on the principles it should
obey.

The well known principles of anonymity, neutrality, reversal symmetry and majority are often
invoked as they are deemed able to guarantee a certain amount of equity and fairness in the col-
lective decisions. The principle of anonymity states that identities of individuals are irrelevant to
determine the social outcome; the principle of neutrality states that alternatives are equally treated;
the principle of reversal symmetry states that a complete change in each committee member’s mind
about her own ranking of alternatives implies a complete change in the social outcome; the principle
of majority states that if the number of people preferring an alternative to another one is greater
than or equal to a fixed majority threshold, then the former alternative has to be socially preferred
to the latter one. As the majority principle, for a given majority threshold, may be inconsistent
with any social outcome because of the presence of Condorcet-cycles, Bubboloni and Gori (2013)
recently introduced a new version of that principle, called minimal majority principle: it requires

∗The author greatly thanks Daniela Bubboloni for suggesting some of the issues considered in the paper and for
providing useful comments which allowed to improve and clarify many arguments. The author is also grateful to
Pierluigi Zezza for computing via a CAS the representatives of the orbits in some special cases: such an empirical
material strongly helped guide the research and allowed to prove Statement 1 of Proposition 13 when individuals are
five and alternatives are four.
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that the social outcome has to be consistent with all the majority thresholds which do not generate
Condorcet-cycles.

Under the assumption that individual preferences are expressed in the form of strict rankings,
Bubboloni and Gori (2014, Corollary 16) prove that the set of anonymous, neutral and reversal
symmetric minimal majority rules, denoted by FG

min, is nonempty if and only if gcd(h, n!) = 1,
where h is the number of committee members and n is the number of alternatives to be ranked1.
Moreover, under the assumption gcd(h, n!) = 1, if alternatives are two, then the simple majority
is the unique element in FG

min, while if alternatives are three or more, then FG
min has at least two

elements2. That means that, when alternatives are at least three, founding an agreement on the
principles of anonymity, neutrality, reversal symmetry and minimal majority is not enough to select
a unique rule. Thus, further shared principles are needed to finally decide which rule to employ for
the collective decision. The main purpose of the present paper is exactly to discuss some principles
that committee members may use to exclude some rules in FG

min and that, in our opinion, are still
linked to the intuitive concepts of equity and fairness. As we are going to show, those principle
sometimes lead to make only one rule survive.

Let us introduce them. Given a preference profile p (that is, a list of individual preferences ex-
pressed as strict rankings) and two strict rankings q1 and q2 (interpreted as possible social outcomes),
we say that q1 gets more votes than q2 (according to p) if the number of individuals whose preferences
are equal to q2 is greater than the number of individuals whose preferences are equal to q1. We say
that q1 is Pareto superior to q2 (according to p) if, for every pair of alternatives, individuals who
agree with q1 with respect to the two alternatives are at least as many as individuals who agree with
q2 and, for a particular pair of alternatives, they are more. Consider now a set G of rules. We say
that a rule F ∈ G satisfies the most votes principle in G if, for every rule F ′ ∈ G and every preference
profile p, the social outcome associated with p by F ′ does not get more votes than the social outcome
associated with p by F . Analogously, we say that a rule F ∈ G satisfies the Pareto principle in G if,
for every rule F ′ ∈ G and every preference profile p, the social outcome associated with p by F ′ is
not Pareto superior to the social outcome associated with p by F . We denote by M(G) the subset
of rules of G satisfying the most votes principle in G, and by P (G) the subset of rules of G satisfying
the Pareto principle in G.

Assuming that committee members agree to pick their aggregation rule in the set FG
min, we think

that rules inM(FG
min)∩P (F

G
min) should be preferred. Indeed, in our opinion, their further properties

assure yet more equitable and fairer collective choices. Unfortunately, it is not true that such a set
is nonempty for all h and n.

Focusing at first on the special case where alternatives are three and under the assumption
gcd(h, n!) = 1, we prove that M(FG

min) and P (F
G
min) are always nonempty. Moreover, we show that

if h ∈ {5, 7, 11, 13}, then M(FG
min) ∩ P (F

G
min) is a singleton, while if h 6∈ {5, 7, 11, 13}, then that set

is empty. In the latter case, we have then that demanding a rule satisfying both the most votes
principle and the Pareto principle in FG

min is too restrictive. A possible way out can be to find
a preliminary agreement on which is the most compelling principle between the two. If committee
members decide that it is the most votes principle, then they have to first look at the setM(FG

min) and,
if necessary, at the set P (M(FG

min)). If committee members decide instead that the most compelling
is the Pareto principle, then they first have to consider P (FG

min) and later, if necessary, M(P (FG
min)).

According to this idea we prove that, while P (FG
min) is never a singleton, M(FG

min) is a singleton if
and only if h ∈ {5, 7, 11}. That means that, differently from the Pareto principle, the refinement
determined by the most votes principle alone sometimes selects a unique rule. We also prove that
P (M(FG

min)) and M(P (FG
min)) are always singletons and that if h ∈ {5, 7, 11, 13}, then they are both

equal to M(FG
min)∩P (F

G
min), while if h 6∈ {5, 7, 11, 13}, then they are not equal. As a consequence, if

h ∈ {5, 7, 11, 13}, we have that any combination of the most votes and Pareto principles leads to the
same unique outcome, while if h 6∈ {5, 7, 11, 13}, the order the principles are applied is not inessential.

1Note that Moulin (1983, Theorem 1, p.23) first understood the importance of condition gcd(h, n!) = 1, proving
that it is a necessary and sufficient condition for the existence of anonymous, neutral social choice functions satisfying
the unanimity condition.

2The first fact is well known, while the second one is not. However, it is an immediate consequence of Theorems 1
and 2 so that we do not directly prove it in the paper.
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We finally show that, for every value of h, both the unique element in P (M(FG
min)) and the one in

M(P (FG
min)) can be fully described via a simple algorithm whose pseudo-code is proposed in Section

8. We stress that the possibility to design those algorithms is strongly related to the constructive
way to prove the mentioned results, which in turn is based on the algebraic techniques introduced
in Bubboloni and Gori (2013, 2014). In our opinion, such a constructive approach to proofs and its
by-products (counting the rules, finding algorithms) deserve to be carefully deepened particularly in
respect of the goals and methods of computational social choice (see Chevaleyre et al., 2007).

When the alternatives are at least four and gcd(h, n!) = 1, we show instead that M(FG
min) ∩

P (FG
min) is empty, while P (M(FG

min)) and M(P (FG
min)) have more than one element. That shows

in particular that, with more than three alternatives, no combination of the most votes and Pareto
principles is able to select a unique anonymous, neutral and reversal symmetric minimal majority
rule, so that the analysis of further or different principles is necessary.

Of course, even though in the paper we focus only on the most votes and Pareto principles, our
approach for selecting rules in FG

min can be employed to other principles. Indeed, for any conceivable
set of reasonable principles, one may ask how many rules are selected by a given combination of
them, whether there is a special combination selecting exactly one rule, and, when uniqueness is
got, whether there is a simple and efficient algorithm for the computation of the social outcome. At
the same time, we strongly believe that in a number of different situations the algebraic machinery
developed in Bubboloni and Gori (2013, 2014), which proves to be fundamental to manage the issues
considered in this paper, can be successfully applied.

2 Definitions and main results

From now on let h, n ∈ N with h, n ≥ 2 be fixed. Let H = {1, . . . , h} be the set of individuals
and N = {1, . . . , n} be the set of alternatives. A preference on N is a linear order on N , that
is, a complete, transitive and antisymmetric binary relation on N . We denote by L(N) the set of
preferences on N . Given p0 ∈ L(N) and x, y ∈ N , if (x, y) ∈ p0 and (y, x) 6∈ p0, then we say
that x is preferred to y according to p0 and we sometimes write x >p0 y. We identify preferences
on N with column vectors: for instance, the vector [2, 1, 3]T represents the preference on {1, 2, 3}
according to which 2 is preferred to 1 and 3, and 1 is preferred to 3. A preference profile is an element
of P = L(N)h. If p ∈ P and i ∈ H, the i-th component of p is denoted by pi and represents the
preference of individual i. Any p ∈ P can be identified with the (n× h)-matrix whose i-th column is
the column vector representing pi. A rule (or social welfare function) is a function from P to L(N).
The set of rules is denoted by F .

Let Sh be the set of bijective functions from H into H, Sn be the set of bijective functions from N
into N , and Ω be the subset of Sn whose elements are the identity function and the reversal map ρ0,
defined, for every r ∈ N , as ρ0(r) = n− r + 1. Those sets, whose elements are called permutations,
are groups with the product given by the right-to-left composition3 and neutral element given by the
identity function id. Given now [a1, . . . , an]

T ∈ L(N) and ψ ∈ Sn, define

ψ[a1, . . . , an]
T = [ψ(a1), . . . , ψ(an)]

T ,

[a1, . . . , an]
T id = [a1, . . . , an]

T ,

[a1, . . . , an]
T ρ0 = [aρ0(1), . . . , aρ0(n)]

T = [an, . . . , a1]
T .

Let us consider the group G = Sh×Sn×Ω, and define, for every p ∈ P and (ϕ, ψ, ρ) ∈ G, p(ϕ,ψ,ρ) ∈ P
as the preference profile such that, for every i ∈ H,

(

p(ϕ,ψ,ρ)
)

i
= ψpϕ−1(i)ρ.

3Let k ∈ N and f1, f2 ∈ Sk. Then f1f2 ∈ Sk is the function such that, for every x ∈ {1, . . . , k}, f1f2(x) = f1(f2(x)).
Note that in group theory is more frequent the left-to-right notation. Any notation and basic results for permutations
groups used in the paper are standard (see, for instance, Wielandt (1964) and Rose (1978)).

3



The preference profile p(ϕ,ψ,ρ) is then obtained by p according to the following rules: for every i ∈ H,
individual i is renamed ϕ(i); for every x ∈ N , alternative x is renamed ψ(x); for every r ∈ N ,
alternatives whose rank is r are moved to rank ρ(r). For instance, if n = 3, h = 5 and

p =





3 1 2 3 2
2 2 1 2 3
1 3 3 1 1



 , ϕ = (134)(25), ψ = (12), ρ = ρ0 = (13),

then we have

p(ϕ,ψ,ρ0) =





2 2 2 3 3
1 3 1 2 1
3 1 3 1 2



 .

Later on, we will write the i-th component of p(ϕ,ψ,ρ) simply as p
(ϕ,ψ,ρ)
i .

A rule F is said anonymous, neutral and reversal symmetric, or briefly G-symmetric, if, for every
p ∈ P and (ϕ, ψ, ρ) ∈ G,

F (p(ϕ,ψ,ρ)) = ψF (p)ρ.

The set of G-symmetric rules is denoted by FG.
Given ν ∈ N ∩ (h/2, h], we define, for every p ∈ P, the set

Cν(p) =
{

q0 ∈ L(N) : ∀x, y ∈ N, |{i ∈ H : x >pi y}| ≥ ν ⇒ x >q0 y
}

,

that is, the set of preferences having x preferred to y whenever, according to the preference profile
p, at least ν individuals prefer x to y. Note that if ν, ν′ ∈ N∩ (h/2, h] and ν ≤ ν′, then we have that,
for every p ∈ P, Cν(p) ⊆ Cν′(p). It is known that4 Cν(p) 6= ∅ for all p ∈ P if and only if ν > n−1

n
h.

For every p ∈ P, define also

ν(p) = min{ν ∈ N ∩ (h/2, h] : Cν(p) 6= ∅},

and observe that the definition is well posed as Ch(p) 6= ∅. A rule F is said a minimal majority rule

if, for every p ∈ P , F (p) ∈ Cν(p)(p). The set of minimal majority rules, denoted by Fmin, is clearly
nonempty.

Consider now the set of G-symmetric minimal majority rules, that is, the set FG
min = FG ∩Fmin.

As proved in Bubboloni and Gori (2014, Corollary 16 and Section 7.2), we have that

FG
min 6= ∅ if and only if gcd(h, n!) = 1. (1)

Moreover, under the assumption gcd(h, n!) = 1, it is immediate to prove that n = 2 implies that the
simple majority rule is the unique element in FG

min, while n ≥ 3 implies |FG
min| ≥ 2 (as follows by

Theorems 1 and 2 below). That means that, when at least three alternatives are considered, if the
principles of anonymity, neutrality, reversal symmetry and minimal majority are not contradictory,
then they are consistent with two or more rules. In what follows, we propose further reasonable
principles that can be used to select rules in FG

min when gcd(h, n!) = 1. Those principles have been
discussed in the introduction: here we propose their formalization within our framework. As we will
show, in some cases those principles allow to identify a unique rule.

Given a subset G of F , let us define

M(G) =
{

F ∈ G : ∀F ′ ∈ G, ∀p ∈ P, |{i ∈ H : pi = F (p)}| ≥ |{i ∈ H : pi = F ′(p)}|
}

.

Thus, F 6∈M(G) means there are F ′ ∈ G and p ∈ P such that people expressing F ′(p) are more than
the ones expressing F (p). We say that rules in M(G) satisfy the most votes principle in G. Note that
M(M(G)) =M(G) and that if |G| ≤ 1, then M(G) = G.

4See, for instance, Theorem 10 in Bubboloni and Gori (2013).
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For every p ∈ P, q0 ∈ L(N) and x, y ∈ N with x 6= y, let us denote by A(p, q0, x, y) the number
of individuals who, according to p, express the same opinion as q0 on alternatives x and y, that is,

A(p, q0, x, y) =

{

|{i ∈ H : (x, y) ∈ pi}| if (x, y) ∈ q0,

|{i ∈ H : (y, x) ∈ pi}| if (y, x) ∈ q0.

Of course, A(p, q0, x, y) ∈ {0, . . . , h} and A(p, q0, x, y) = A(p, q0, y, x). Let us consider the set

C = {(x, y) ∈ N2 : x < y}

whose order is n(n−1)
2 , and, for every p ∈ P and q0 ∈ L(N), define the vector

A(p, q0) =
(

A(p, q0, x, y)
)

(x,y)∈C
∈ {0, . . . , h}

n(n−1)
2 .

Given now a subset G of F , let us define5

P (G) =
{

F ∈ G : ∀F ′ ∈ G, ∀p ∈ P, A(p, F ′(p)) 6> A(p, F (p))
}

.

We say that rules in P (G) satisfy the Pareto principle in G. Note that P (P (G)) = P (G) and that if
|G| ≤ 1, then P (G) = G.

The following theorems describe some properties of the sets M(FG
min), P (F

G
min), M(FG

min) ∩
P (FG

min), P (M(FG
min)) and M(P (FG

min)). We recall that gcd(h, n!) ≥ 2 implies that all those sets
are empty since FG

min is empty. Moreover, when n = 2 and gcd(h, n!) = 1, they all have a unique
element given by the simple majority rule.

Theorem 1. Let n = 3 and gcd(h, n!) = 1.

1. If h ∈ {5, 7, 11}, then |M(FG
min)| = 1.

2. If h 6∈ {5, 7, 11}, then |M(FG
min)| ≥ 2.

3. |P (FG
min)| ≥ 2.

4. If h ∈ {5, 7, 11, 13}, then |M(FG
min) ∩ P (F

G
min)| = 1.

5. If h 6∈ {5, 7, 11, 13}, then M(FG
min) ∩ P (F

G
min) = ∅.

6. |P (M(FG
min))| = 1.

7. |M(P (FG
min))| = 1.

8. If h ∈ {5, 7, 11, 13}, M(FG
min) ∩ P (F

G
min) = P (M(FG

min)) =M(P (FG
min)).

9. If h 6∈ {5, 7, 11, 13}, P (M(FG
min)) 6=M(P (FG

min)).

Theorem 1 states in particular that if n = 3 and gcd(h, n!) = 1, then both P (M(FG
min)) and

M(P (FG
min)) are singletons. Moreover, denoting by FMP the unique element in P (M(FG

min)) and by
FPM the unique element in M(P (FG

min)), we have that F
MP = FPM if and only if h ∈ {5, 7, 11, 13}.

We finally emphasize that the strategy used to prove Theorem 1 allows to determine simple algorithms
to compute the value of FMP and FPM on every preference profile. Those algorithms are described
in Section 8.

The next theorem shows instead that, when the alternatives are at least four, any combination
of the most votes and Pareto principles is unable to select a unique rule.

Theorem 2. Let n ≥ 4 and gcd(h, n!) = 1.

1. M(FG
min) ∩ P (F

G
min) = ∅.

2. |P (M(FG
min))| ≥ 2.

3. |M(P (FG
min))| ≥ 2.

5Given k ∈ N and v = (vi)
k

i=1
, w = (wi)

k

i=1
∈ R

k, we write v ≥ w when vi ≥ wi for all i ∈ {1, . . . , k}, and we write
v > w when v ≥ w and v 6= w. We also use the symbol 6> with the obvious meaning.
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3 Action on the set of preference profile

As proved in Bubboloni and Gori (2014, Proposition 1), for every p ∈ P and (ϕ1, ψ1, ρ1), (ϕ2, ψ2, ρ2) ∈
G, we have

p (ϕ1ϕ2,ψ1ψ2,ρ1ρ2) =
(

p (ϕ2,ψ2,ρ2)
)(ϕ1,ψ1,ρ1)

.

Then, the function6 f : G→ Sym(P) defined, for every (ϕ, ψ, ρ) ∈ U , as

f(ϕ, ψ, ρ) : P → P, p 7→ p(ϕ,ψ,ρ),

is well posed and it is an action of the group G on the set P. For every p ∈ P, we define the orbit
of p as pG = {p(ϕ,ψ,ρ) ∈ P : (ϕ, ψ, ρ) ∈ G}, and the stabilizer of p as

StabG(p) =
{

(ϕ, ψ, ρ) ∈ G : p(ϕ,ψ,ρ) = p
}

.

The set of orbits O = {pG : p ∈ P} is a partition7 of P and we put |O| = R. Any vector (pj)Rj=1 ∈ PR

such that {pj G : j ∈ {1, . . . , R}} = O, is called a system of representatives of the orbits. The set of
the systems of representatives of the orbits is nonempty and denoted by S.

4 Preliminary results

For every p ∈ P, let us define the following sets:

SG1 (p) =
{

q0 ∈ L(N) : ∀(ϕ, ψ, ρ) ∈ StabG(p), ψq0ρ = q0

}

,

SG2 (p) = SG1 (p) ∩ Cν(p)(p),

SGM (p) =
{

q0 ∈ SG2 (p) : ∀q1 ∈ SG2 (p), |{i ∈ H : pi = q0}| ≥ |{i ∈ H : pi = q1}|
}

,

SGP (p) =
{

q0 ∈ SG2 (p) : ∀q1 ∈ SG2 (p), A(p, q1) 6> A(p, q0)
}

,

SGMP (p) =
{

q0 ∈ SGM (p) : ∀q1 ∈ SGM (p), A(p, q1) 6> A(p, q0)
}

,

SGPM (p) =
{

q0 ∈ SGP (p) : ∀q1 ∈ SGP (p), |{i ∈ H : pi = q0}| ≥ |{i ∈ H : pi = q1}|
}

.

Proposition 3. Let p ∈ P, q0 ∈ L(N), (ϕ, ψ, ρ) ∈ G and x, y ∈ N with x 6= y. Then

A(p(ϕ,ψ,ρ), ψq0ρ, x, y) = A(p, q0, ψ
−1(x), ψ−1(y)).

Proof. Assume first that (x, y) ∈ ψq0ρ and ρ = ρ0. Observe first that (x, y) ∈ ψq0ρ if and only if
(ψ−1(x), ψ−1(y)) ∈ q0ρ if and only if (ψ−1(y), ψ−1(x)) ∈ q0. Then we have to check that

|{i ∈ H : (x, y) ∈ p
(ϕ,ψ,ρ)
i }| = |{i ∈ H : (ψ−1(y), ψ−1(x)) ∈ pi}|.

But that equality holds true as

|{i ∈ H : (x, y) ∈ p
(ϕ,ψ,ρ))
i }| = |{i ∈ H : (x, y) ∈ ψpϕ−1(i)ρ}| = |{i ∈ H : (x, y) ∈ ψpiρ}| =

|{i ∈ H : (ψ−1(x), ψ−1(y)) ∈ piρ}| = |{i ∈ H : (ψ−1(y), ψ−1(x)) ∈ pi}|.

All the other cases can be analogously analised.

6Sym(P) is the set of bijective functions from P to P. It is a group with respect to the right-to-left composition.
7In the paper, a partition of a nonempty set X is a family of nonempty pairwise disjoint subsets of X whose union

is X.
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Proposition 4. Let p ∈ P, (ϕ, ψ, ρ) ∈ G and j ∈ {1, 2,M, P,MP, PM}. Then

SGj (p
(ϕ,ψ,ρ)) = ψSGj (p)ρ.

Proof. It is well known that

StabG(p
(ϕ,ψ,ρ)) = (ϕ, ψ, ρ) StabG(p) (ϕ

−1, ψ−1, ρ−1).

Moreover, as proved in Bubboloni and Gori (2014, Lemma 7), we have that

Cν(p(ϕ,ψ,ρ))(p
(ϕ,ψ,ρ)) = ψCν(p)(p)ρ.

Using the above equalities, Proposition 3 and the fact that Ω is abelian, a routine computation allows
to complete the proof.

Proposition 5. Let gcd(h, n!) 6= 1. Then there exists p ∈ P such that SG1 (p) = ∅.

Proof. By the proof of Theorem 5 in Bubboloni and Gori (2013), there exists p ∈ P and an element
(ϕ, ψ, id) ∈ StabG(p) with ψ 6= id. Assume that q0 ∈ SG1 (p): then q0 should satisfy ψq0 = q0, that
is, ψ = id, a contradiction.

Proposition 6. Let gcd(h, n!) = 1. Then, for every p ∈ P, SG2 (p) 6= ∅.

Proof. See the proof of Theorem 10 in Bubboloni and Gori (2014), recalling that gcd(h, n!) = 1
implies that G is a regular group.

Proposition 7. Let gcd(h, n!) = 1. Then, for every p ∈ P, SGM (p) 6= ∅.

Proof. Given p ∈ P, by Proposition 6 we have that SG2 (p) 6= ∅. As a consequence, the set
{

|{i ∈ H : pi = q0}| : q0 ∈ SG2 (p)
}

⊆ N0 is nonempty and finite and thus has a maximumm. Consider
then any q∗0 ∈ SG2 (p) such that |{i ∈ H : pi = q∗0}| = m. Then q∗0 ∈ SGM (p) 6= ∅.

Proposition 8. Let gcd(h, n!) = 1. Then, for every p ∈ P, SGP (p) 6= ∅.

Proof. Fix p ∈ P and let � be the relation on the nonempty set SG2 (p) defined as follows: for every
q0, q1 ∈ SG2 (p), we set q0 � q1 if, for every x, y ∈ N with x 6= y, A(p, q0, x, y) ≥ A(p, q1, x, y).

It is immediate to check that � is reflexive and transitive. Let us prove now that � is also
antisymmetric. Consider q0, q1 ∈ SG2 (p) and assume that q0 � q1 and q1 � q0. Then, for every
x, y ∈ N with x 6= y,

A(p, q0, x, y) ≥ A(p, q1, x, y), and A(p, q1, x, y) ≥ A(p, q0, x, y).

that is, A(p, q0, x, y) = A(p, q1, x, y). Assume now by contradiction that q0 6= q1. Then there exist
x′, y′ ∈ N such that (x′, y′) ∈ q0 and (y′, x′) ∈ q1. Thus

A(p, q0, x
′, y′) = |{i ∈ H : (x′, y′) ∈ pi}| and A(p, q1, x

′, y′) = |{i ∈ H : (y′, x′) ∈ pi}|.

Since |{i ∈ H : (x′, y′) ∈ pi}| = |{i ∈ H : (y′, x′) ∈ pi}| and

|{i ∈ H : (x′, y′) ∈ pi}|+ |{i ∈ H : (y′, x′) ∈ pi}| = h,

we have that 2 | h and the contradiction is found. Since � is reflexive, antisymmetric and transitive
and SG2 (p) is finite, the set of maximal elements of � is nonempty and equal to SGP (p).

Proposition 9. Let gcd(h, n!) = 1. Then, for every p ∈ P, SGMP (p) 6= ∅.

Proof. Repeat the proof of Proposition 8, using SGM (p) 6= ∅ guaranteed by Proposition 7.

Proposition 10. Let gcd(h, n!) = 1. Then, for every p ∈ P, SGPM (p) 6= ∅.
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Proof. Repeat the proof of Proposition 7, using SGP (p) 6= ∅ guaranteed by Proposition 8.

Proposition 11. Let gcd(h, n!) = 1. Then, for every p ∈ P,

|Cν(p)(p)| = 1 ⇒ Cν(p)(p) = SG2 (p) = SGM (p) = SGP (p) = SGMP (p) = SGPM (p).

Proof. For every p ∈ P, Cν(p)(p) ⊇ SG2 (p) ⊇ SGM (p) ⊇ SGMP (p) and Cν(p)(p) ⊇ SG2 (p) ⊇ SGP (p) ⊇
SGPM (p). Moreover, by Propositions 6, 7, 8, 9, and 10, the sets SG2 (p), SGM (p), SGP (p), S

G
MP (p), and

SGPM (p) are nonempty. That completes the proof.

The next crucial propositions are proved in Sections 6 and 7.

Proposition 12. Let n = 3 and gcd(h, n!) = 1.

1. If h ∈ {5, 7, 11}, then |SGM (p)| = 1 for all p ∈ P.

2. If h 6∈ {5, 7, 11}, then there exists p ∈ P such that |SGM (p)| ≥ 2.

3. There exists p ∈ P such that |SGP (p)| ≥ 2.

4. |SGMP (p)| = 1 for all p ∈ P.

5. |SGPM (p)| = 1 for all p ∈ P.

6. If h ∈ {5, 7, 11, 13}, then SGMP (p) = SGPM (p) = SGM (p) ∩ SGP (p) for all p ∈ P.

7. If h 6∈ {5, 7, 11, 13}, then there exists p ∈ P such that SGM (p) ∩ SGP (p) = ∅. In particular,

SGMP (p) 6= SGPM (p).

Proposition 13. Let n ≥ 4 and gcd(h, n!) = 1.

1. There exists p ∈ P such that SGM (p) ∩ SGP (p) = ∅.

2. There exists p ∈ P such that |SGM (p) ∩ SGP (p)| ≥ 2, |SGMP (p)| ≥ 2, and |SGMP (p)| ≥ 2.

5 Proofs of Theorems 1 and 2

To begin with, we state some results proved in Bubboloni and Gori (2014).

• If F ∈ FG, then F (p) ∈ SG1 (p) for all p ∈ P.

• If F ∈ FG
min, then F (p) ∈ SG2 (p) for all p ∈ P.

• Fix (pj)Rj=1 ∈ S. For every (qj)
R
j=1 ∈ ×Rj=1S

G
1 (pj), there exists a unique element in FG, denoted

by Ψ
[

(pj)Rj=1, (qj)
R
j=1

]

, mapping pj into qj for all j ∈ {1, . . . , R}. Moreover, the function

f : ×Rj=1S
G
1 (pj) → FG, (qj)

R
j=1 7→ f

(

(qj)
R
j=1

)

= Ψ
[

(pj)Rj=1, (qj)
R
j=1

]

(2)

is bijective and we have

f
(

×Rj=1S
G
2 (pj)

)

= FG
min, |FG

min| =
R
∏

j=1

|SG2 (pj)|. (3)

• FG 6= ∅ if and only if FG
min 6= ∅ if and only if gcd(h, n!) = 1.

Proposition 14. Let F ∈M(FG
min). Then, for every p ∈ P, F (p) ∈ SGM (p).
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Proof. Since in particular F ∈ FG
min, we know that, for every p ∈ P, F (p) ∈ SG2 (p). Assume by

contradiction there exists p∗ ∈ P such that F (p∗) 6∈ SGM (p∗). Then there exists q∗0 ∈ SG2 (p∗) such
that |{i ∈ H : p∗i = F (p∗)}| < |{i ∈ H : p∗i = q∗0}|. Consider now any (pj)Rj=1 ∈ S such that p1 = p∗,

and define (qj)
R
j=1 ∈ ×Rj=1S

G
2 (pj) as q1 = q∗0 and, for every j ∈ {2, . . . , R}, qj = F (pj). Then the

rule F ′ = Ψ[(pj)Rj=1, (qj)
R
j=1] ∈ FG

min is such that

|{i ∈ H : p∗i = F (p∗)}| < |{i ∈ H : p∗i = q∗0}| = |{i ∈ H : p∗i = F ′(p∗)}|.

Then F 6∈M(FG
min) and the contradiction is found.

Proposition 15. Let (pj)Rj=1 ∈ S and f defined as in (2). Then f
(

×Rj=1S
G
M (pj)

)

= M(FG
min). In

particular, |M(FG
min)| =

∏R
j=1 |S

G
M (pj)|.

Proof. In order to prove that f
(

×Rj=1S
G
M (pj)

)

⊆ M(FG
min), let us fix (qj)

R
j=1 ∈ ×Rj=1S

G
M (pj), define

F = f
(

(qj)
R
j=1

)

and prove that F ∈ M(FG
min). By (3) we have F ∈ FG

min. Given now F ′ ∈ FG
min

and p ∈ P , we get the proof showing that |{i ∈ H : pi = F (p)}| ≥ |{i ∈ H : pi = F ′(p)}|.
Observe that F (p), F ′(p) ∈ SG2 (p) and that there are j ∈ {1, . . . , R} and (ϕ, ψ, ρ) ∈ G such that
p = pj (ϕ,ψ,ρ). Moreover, by Proposition 14, F (pj) = qj ∈ SGM (p) while F ′(pj) = qj ∈ SG2 (p) and thus

|{i ∈ H : pji = F (pj)}| ≥ |{i ∈ H : pji = F ′(pj)}|. Note also that

|{i ∈ H : pi = F (p)}| = |{i ∈ H : p
j (ϕ,ψ,ρ)
i = F (pj (ϕ,ψ,ρ))}|

= |{i ∈ H : ψpj
ϕ−1(i)ρ = ψF (pj)ρ}| = |{i ∈ H : pj

ϕ−1(i) = F (pj)}| = |{i ∈ H : pji = F (pj)}|,

and, analogously
|{i ∈ H : pi = F ′(p)}| = |{i ∈ H : pji = F ′(pj)}|.

Then, we finally get |{i ∈ H : pi = F (p)}| ≥ |{i ∈ H : pi = F ′(p)}|.
In order to prove that M(FG

min) ⊆ f
(

×Rj=1S
G
M (pj)

)

, observe that if F ∈ M(FG
min), then we have

that F = Ψ
[

(pj)Rj=1, (F (p
j))Rj=1

]

where, by Proposition 14, (F (pj))Rj=1 ∈ ×Rj=1S
G
M (pj).

Proposition 16. Let F ∈ P (FG
min). Then, for every p ∈ P, F (p) ∈ SGP (p).

Proof. Since F ∈ FG
min, we know that, for every p ∈ P, F (p) ∈ SG2 (p). Assume by contradiction

there exists p∗ ∈ P such that F (p∗) 6∈ SGP (p
∗). Then there exists q∗0 ∈ SG2 (p∗) such that A(p∗, q∗0) >

A(p∗, F (p∗)). Consider now any (pj)Rj=1 ∈ S such that p1 = p∗, and define (qj)
R
j=1 ∈ ×Rj=1S

G
2 (pj) as

q1 = q∗0 and, for every j ∈ {2, . . . , R}, qj = F (pj). Since the rule F ′ = Ψ[(pj)Rj=1, (qj)
R
j=1] ∈ FG

min is

such that A(p∗, F ′(p∗)) = A(p∗, q∗0) > A(p∗, F (p∗)), we get that F 6∈ P (FG
min) and the contradiction

is found.

Proposition 17. Let (pj)Rj=1 ∈ S and f defined as in (2). Then f
(

×Rj=1S
G
P (p

j)
)

= P (FG
min). In

particular, |P (FG
min)| =

∏R
j=1 |S

G
P (p

j)|.

Proof. In order to prove that f
(

×Rj=1S
G
P (p

j)
)

⊆ P (FG
min), let us fix (qj)

R
j=1 ∈ ×Rj=1S

G
P (p

j), define

F = f
(

(qj)
R
j=1

)

and prove that F ∈ P (FG
min). By (3) we have F ∈ FG

min. Given now F ′ ∈ FG
min

and p ∈ P, we get the proof showing that A(p, F ′(p)) 6> A(p, F (p)). Let j ∈ {1, . . . , R} and
(ϕ, ψ, ρ) ∈ G such that p = pj (ϕ,ψ,ρ).Note that, F (pj) = qj ∈ SGP (p) and F ′(pj) ∈ SG2 (p). Then,
A(pj , F ′(pj)) 6> A(pj , F (pj)). Using now Proposition 3, we have that for every x, y with x 6= y,

A(p, F (p), x, y) = A(pj (ϕ,ψ,ρ), ψF (pj)ρ, x, y) = A(pj , F (pj), ψ−1(x), ψ−1(y))

and
A(p, F ′(p), x, y) = A(pj (ϕ,ψ,ρ), ψF ′(pj)ρ, x, y) = A(pj , F ′(pj), ψ−1(x), ψ−1(y)).

Recalling that ψ is a bijection, that implies A(p, F ′(p)) 6> A(p, F (p)) and the proof is complete.
In order to prove that P (FG

min) ⊆ f
(

×Rj=1S
G
P (p

j)
)

, observe that if F ∈ P (FG
min), then we have

that F = Ψ
[

(pj)Rj=1, (F (p
j))Rj=1

]

where, by Proposition 16, (F (pj))Rj=1 ∈ ×Rj=1S
G
P (p

j).
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Proposition 18. Let F ∈M(FG
min) ∩ P (F

G
min). Then, for every p ∈ P, F (p) ∈ SGM (p) ∩ SGP (p).

Proof. It immediately follows from Propositions 14 and 16.

Proposition 19. Let (pj)Rj=1 ∈ S and f defined as in (2). Then f
(

×Rj=1S
G
M (pj) ∩ SGP (p

j)
)

=

M(FG
min) ∩ P (F

G
min). In particular, |M(FG

min) ∩ P (F
G
min)| =

∏R
j=1 |S

G
M (pj) ∩ SGP (p

j)|.

Proof. In order to prove that f
(

×Rj=1S
G
M (pj) ∩ SGP (p

j)
)

⊆ M(FG
min) ∩ P (FG

min), simply note that

f
(

×Rj=1S
G
M (pj) ∩ SGP (p

j)
)

⊆ f
(

×Rj=1S
G
M (pj)

)

∩ f
(

×Rj=1S
G
P (p

j)
)

and apply Propositions 15 and 17.

In order to prove the opposite inclusion, observe that if F ∈M(FG
min) ∩ P (F

G
min), then we have that

F = Ψ
[

(pj)Rj=1, (F (p
j))Rj=1

]

where, by Proposition 18, (F (pj))Rj=1 ∈ ×Rj=1S
G
M (pj) ∩ SGP (p

j).

Proposition 20. Let F ∈ P (M(FG
min)). Then, for every p ∈ P, F (p) ∈ SGMP (p).

Proof. Follow the same argument as the proof of Proposition 16.

Proposition 21. Let (pj)Rj=1 ∈ S and f defined in (2). Then f
(

×Rj=1S
G
MP (p

j)
)

= P (M(FG
min)). In

particular, |P (M(FG
min))| =

∏R
j=1 |S

G
MP (p

j)|.

Proof. Follow the same argument as the proof in Proposition 17.

Proposition 22. Let F ∈M(P (FG
min)). Then, for every p ∈ P, F (p) ∈ SGPM (p).

Proof. Follow the same argument as the proof of Proposition 14.

Proposition 23. Let (pj)Rj=1 ∈ S and f defined as in (2). Then f
(

×Rj=1S
G
PM (pj)

)

=M(P (FG
min)).

In particular, |M(P (FG
min))| =

∏R
j=1 |S

G
PM (pj)|.

Proof. Follow the same argument as the proof of Proposition 15.

Proof of Theorem 1. Statement 1. Apply Propositions 12.1 and 15.

Statement 2. By Proposition 12.2, we know there exists p ∈ P such that |SGM (p)| ≥ 2. Considering
any (pj)Rj=1 ∈ S such that p1 = p and applying Proposition 15, we obtain the desired result.

Statement 3. Follow the same argument used to prove Statement 2 applying Propositions 12.3 and
17.

Statement 4. Apply Propositions 12.4, 12.6 and 19.

Statement 5. Follow the same argument used to prove Statement 2 applying Propositions 12.7 and
19.

Statement 6. Apply Propositions 12.4 and 21.

Statement 7. Apply Propositions 12.5 and 23.

Statement 8. Apply Propositions 12.6, 19, 21 and 23.

Statement 9. Follow the same argument used to prove Statement 2 applying Propositions 12.7, 21
and 23.

Proof of Theorem 2. Statement 1. By Proposition 13.1, we know there exists p ∈ P such that
|SGM (p) ∩ SGP (p)| = 0. Considering any (pj)Rj=1 ∈ S such that p1 = p and applying Propositions 19,
we obtain the desired result.

Statement 2. Follow the same argument used to prove Statement 1 applying Propositions 9, 13.2
and 21.

Statement 3. Follow the same argument used to prove Statement 1 applying Propositions 10, 13.2
and 23.
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6 Proof of Proposition 12

6.1 Preliminary notation and remarks.

We assume n = 3 and gcd(h, n!) = 1. For every p ∈ P, define

v1(p) =
∣

∣

{

i ∈ H : pi = [1, 2, 3]T
}
∣

∣ , v2(p) =
∣

∣

{

i ∈ H : pi = [1, 3, 2]T
}
∣

∣ ,

v3(p) =
∣

∣

{

i ∈ H : pi = [2, 1, 3]T
}
∣

∣ , v4(p) =
∣

∣

{

i ∈ H : pi = [2, 3, 1]T
}
∣

∣ ,

v5(p) =
∣

∣

{

i ∈ H : pi = [3, 1, 2]T
}
∣

∣ , v6(p) =
∣

∣

{

i ∈ H : pi = [3, 2, 1]T
}
∣

∣ ,

(4)

and note that (v1(p), . . . , v6(p)) ∈ N
6
0 and that

∑6
j=1 vj(p) = h. Define also, for every x, y ∈ {1, 2, 3}

with x 6= y,
sx,y(p) = |{i ∈ H : (x, y) ∈ pi}| , (5)

and note that sx,y(p) = h− sy,x(p) and

s1,2(p) = v1(p) + v2(p) + v5(p), s2,3(p) = v1(p) + v3(p) + v4(p), s3,1(p) = v4(p) + v5(p) + v6(p),

s2,1(p) = v3(p) + v4(p) + v6(p), s3,2(p) = v2(p) + v5(p) + v6(p), s1,3(p) = v1(p) + v2(p) + v3(p).

We also know that8 if (ϕ, ψ, ρ0) ∈ StabG(p) and (ϕ′, ψ′, ρ0) ∈ StabG(p), then ψ = ψ′ and ψ is a con-
jugate of ρ0 = (13) depending on p, that is, ψ ∈ {(12), (13), (23)}. Using the following computations

(12)





1
2
3



 ρ0 =





3
1
2



 , (12)





1
3
2



 ρ0 =





1
3
2



 , (12)





2
1
3



 ρ0 =





3
2
1



 , (12)





2
3
1



 ρ0 =





2
3
1



 , (12)





3
1
2



 ρ0 =





1
2
3



 , (12)





3
2
1



 ρ0 =





2
1
3



 ,

(13)





1
2
3



 ρ0 =





1
2
3



 , (13)





1
3
2



 ρ0 =





2
1
3



 , (13)





2
1
3



 ρ0 =





1
3
2



 , (13)





2
3
1



 ρ0 =





3
1
2



 , (13)





3
1
2



 ρ0 =





2
3
1



 , (13)





3
2
1



 ρ0 =





3
2
1



 ,

(23)





1
2
3



 ρ0 =





2
3
1



 , (23)





1
3
2



 ρ0 =





3
2
1



 , (23)





2
1
3



 ρ0 =





2
1
3



 , (23)





2
3
1



 ρ0 =





1
2
3



 , (23)





3
1
2



 ρ0 =





3
1
2



 , (23)





3
2
1



 ρ0 =





1
3
2



 ,

it is simple to prove the following statements:

• there exists ϕ ∈ Sh such that (ϕ, (12), ρ0) ∈ StabG(p) if and only if v1(p) = v5(p) and v3(p) =
v6(p). In that case SG1 (p) =

{

[1, 3, 2]T , [2, 3, 1]T
}

.

• there exists ϕ ∈ Sh such that (ϕ, (13), ρ0) ∈ StabG(p) if and only if v2(p) = v3(p) and v4(p) =
v5(p). In that case SG1 (p) =

{

[1, 2, 3]T , [3, 2, 1]T
}

.

• there exists ϕ ∈ Sh such that (ϕ, (23), ρ0) ∈ StabG(p) if and only if v1(p) = v4(p) and v2(p) =
v6(p). In that case SG1 (p) =

{

[2, 1, 3]T , [3, 1, 2]T
}

.

As a consequence,
(v1(p) 6= v5(p) or v3(p) 6= v6(p)) and

(v2(p) 6= v3(p) or v4(p) 6= v5(p)) and

(v1(p) 6= v4(p) or v2(p) 6= v6(p)),

(6)

is a necessary a sufficient condition to have SG1 (p) = L(N).
Fixed p ∈ P and j ∈ {2,M, P,MP, PM}, let us consider now the problem to compute SGj (p).

First of all, let us observe that, by Proposition 4, we can assume without loss of generality that

v1(p) ≥ vj(p) for all j ∈ {1, . . . , 6}. (7)

Define

νh =
h+ 1

2
,

8See Lemma 15 and Theorem 6 in Bubboloni and Gori (2014).
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and note that ν(p) ∈ {νh, . . . , h}. Moreover, for every x, y ∈ N with x 6= y, either sx,y(p) ≥ νh or
sy,x(p) ≥ νh. As a consequence, Cνh(p) 6= ∅ implies |Cνh(p)| = 1 and ν(p) = νh.

Consider now p ∈ P and ν ∈ {νh, . . . , h} and assume that p satisfies (7). Then p cannot be
solution to the system







s1,3(p) ≥ ν
s3,2(p) ≥ ν
s2,1(p) ≥ ν

(8)

Indeed, (7) and the second and third equation in (8) imply that

h = (v2(p) + v5(p) + v6(p)) + (v3(p) + v4(p) + v1(p)) ≥

(v2(p) + v5(p) + v6(p)) + (v3(p) + v4(p) + v6(p)) = s3,2(p) + s2,1(p) ≥ 2ν > h,

that is, a contradiction. As a consequence, if p satisfies (7), then we have that Cν(p) = ∅ is equivalent
to require that p solves the system







s1,2(p) ≥ ν
s2,3(p) ≥ ν
s3,1(p) ≥ ν

6.2 Case-by-case analysis

Let us fix p ∈ P satisfying (7). Our purpose is the computation of the sets SG2 (p), SGM (p), SGP (p),
SGM (p) ∩ SGP (p), S

G
MP (p) and S

G
PM (p). We write vj instead of vj(p) and sx,y instead of sx,y(p).

Case 1. Assume that v1 = v5 and v3 = v6. Observe that s2,3 = s3,1. Note also that it has to be
v2 6= v4 else

h =
6

∑

j=1

vj = 2v1 + 2v2 + 2v3,

that implies the contradiction 2 | h. Note also that s2,3 = s1,2 implies v4 > v2. Indeed, s2,3 = s1,2 is
the same that v1 + v3 + v4 = 2v1 + v2, that is, v3 + v4 = v1 + v2. As v1 ≥ v3 and v2 6= v4 it has to
be v4 > v2. There are several cases to discuss.

Case 1.1. If s2,3 < h/2, then it has to be s1,2 > h/2 as p does not solve (8). Then Cνh(p) = {[1, 3, 2]T }.
That implies SG2 (p) = SGM (p) = SGP (p) = SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) = {[1, 3, 2]T }.

Case 1.2. If s2,3 > h/2 and s1,2 < h/2, then Cνh(p) = {[2, 3, 1]T }. That implies SG2 (p) = SGM (p) =
SGP (p) = SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) = {[2, 3, 1]T }.

Case 1.3. If s2,3 > s1,2 > h/2, then Cs1,2(p) = ∅ and Cs1,2+1(p) = {[2, 3, 1]T }. That implies
SG2 (p) = SGM (p) = SGP (p) = SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) = {[2, 3, 1]T }.

Case 1.4. If s2,3 = s1,2 > h/2, then Cs1,2(p) = ∅ and Cs1,2+1(p) = L(N). Then SG2 (p) =
{[1, 3, 2]T , [2, 3, 1]T } and SGP (p) = {[1, 3, 2]T , [2, 3, 1]T }. Since the equality s2,3 = s1,2 implies v4 > v2,
we get SGM (p) = SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) = {[2, 3, 1]}.

Case 1.5. If s1,2 > s2,3 > h/2, then Cs2,3(p) = ∅ and Cs2,3+1(p) = {[1, 2, 3]T , [1, 3, 2]T , [3, 1, 2]T }.
Then SG2 (p) = {[1, 3, 2]T } and that implies SGM (p) = SGP (p) = SGM (p)∩SGP (p) = SGMP (p) = SGPM (p) =
{[1, 3, 2]T }.

Case 2. Assume that v2 = v3 and v4 = v5. Observe that s1,2 = s2,3. Note also that it has to be
v1 6= v6 else

h =
6

∑

j=1

vj = 2v1 + 2v2 + 2v3,

that implies the contradiction 2 | h. As a consequence v1 > v6. That implies that s1,2+ s2,3 > h and
then s1,2 > h/2. There are several cases to discuss.
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Case 2.1. If s3,1 < h/2, then Cνh(p) = {[1, 2, 3]T }. That implies SG2 (p) = SGM (p) = SGP (p) =
SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) = {[1, 3, 2]T }.

Case 2.2. If s1,2 > s3,1 > h/2, then Cs3,1(p) = ∅ and Cs3,1+1(p) = {[1, 2, 3]T }. That implies
SG2 (p) = SGM (p) = SGP (p) = SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) = {[1, 2, 3]T }.

Case 2.3. If s1,2 = s3,1 > h/2, then Cs3,1(p) = ∅ and Cs3,1+1(p) = L(N). Then SG2 (p) =
{[1, 2, 3]T , [3, 2, 1]T } and SGP (p) = {[1, 2, 3]T , [3, 2, 1]T }. Since v1 > v6, we get SGM (p) = SGM (p) ∩
SGP (p) = SGMP (p) = SGPM (p) = {[1, 2, 3]}.

Case 2.4. If s3,1 > s1,2 > h/2, then Cs1,2(p) = ∅ and Cs1,2+1(p) = {[2, 3, 1]T , [3, 1, 2]T , [3, 2, 1]T }.
Then SG2 (p) = {[3, 2, 1]T } and that implies SGM (p) = SGP (p) = SGM (p)∩SGP (p) = SGMP (p) = SGPM (p) =
{[3, 2, 1]T }.

Case 3. Assume that v1 = v4 and v2 = v6. Observe that s1,2 = s3,1. Note also that it has to be
v3 6= v5 else

h =
6

∑

j=1

vj = 2v1 + 2v2 + 2v3,

that implies the contradiction 2 | h. Note also that s2,3 = s1,2 implies v5 > v3. Indeed s2,3 = s1,2 is
the same that 2v1 + v3 = v1 + v2 + v5, that is, v1 + v3 = v2 + v5. As v1 ≥ v2 and v3 6= v5 it has to
be v5 > v3. There are several cases to discuss.

Case 3.1. If s1,2 < h/2, then it has to be s2,3 > h/2 as p does not solve (8). Then Cνh(p) = {[2, 1, 3]T }.
That implies SG2 (p) = SGM (p) = SGP (p) = SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) = {[2, 1, 3]T }.

Case 3.2. If s1,2 > h/2 and s2,3 < h/2, then Cνh(p) = {[3, 1, 2]T }. That implies SG2 (p) = SGM (p) =
SGP (p) = SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) = {[3, 1, 2]T }.

Case 3.3. If s1,2 > s2,3 > h/2, then Cs2,3(p) = ∅ and Cs2,3+1(p) = {[3, 1, 2]T }. That implies
SG2 (p) = SGM (p) = SGP (p) = SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) = {[3, 1, 2]T }.

Case 3.4. If s1,2 = s2,3 > h/2, then Cs2,3(p) = ∅ and Cs2,3+1(p) = L(N). Then SG2 (p) =
{[2, 1, 3]T , [3, 1, 2]T } and SGP (p) = {[2, 1, 3]T , [3, 1, 2]T }. Since the equality s1,2 = s2,3 implies v5 > v3,
we get SGM (p) = SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) = {[3, 1, 2]}.

Case 3.5. If s2,3 > s1,2 > h/2, then Cs1,2(p) = ∅ and Cs1,2+1(p) = {[1, 2, 3]T , [2, 1, 3]T , [2, 3, 1]T }.
Then SG2 (p) = {[2, 1, 3]T } and that implies SGM (p) = SGP (p) = SGM (p)∩SGP (p) = SGMP (p) = SGPM (p) =
{[2, 1, 3]T }.

Case 4. Assume (6) so that SG1 (p) = L(N). If Cνh(p) 6= ∅, then Cνh(p) = SG2 (p) = SGM (p) = SGP (p) =
SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) and those sets are all singletons. If instead Cνh(p) = ∅, since
Ch(p) 6= ∅, then there exists9 ν∗ ∈ {νh, . . . , h− 1} such that Cν∗(p) = ∅ and Cν∗+1(p) 6= ∅. Thus,
p solves the system







s1,2 ≥ ν∗

s2,3 ≥ ν∗

s3,1 ≥ ν∗

where at least one of the inequalities is indeed an equality. Then, we need to refine the discussion
introducing further cases.

Case 4.1. Assume that p solves






s1,2 ≥ ν∗ + 1
s2,3 ≥ ν∗ + 1
s3,1 = ν∗

Then Cν∗+1(p) = {[1, 2, 3]T } and that implies SG2 (p) = SGM (p) = SGP (p) = SGM (p) ∩ SGP (p) =
SGMP (p) = SGPM (p) = {[1, 2, 3]T }.

9Note that νh < h− 1 if and only if h > 3. Since gcd(h, 6) = 1, that condition is satisfied.
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Case 4.2. Assume that p solves






s1,2 ≥ ν∗ + 1
s2,3 = ν∗

s3,1 ≥ ν∗ + 1

Then Cν∗+1(p) = {[3, 1, 2]T } and that implies SG2 (p) = SGM (p) = SGP (p) = SGM (p) ∩ SGP (p) =
SGMP (p) = SGPM (p) = {[3, 1, 2]T }.

Case 4.3. Assume that p solves






s1,2 = ν∗

s2,3 ≥ ν∗ + 1
s3,1 ≥ ν∗ + 1

Then Cν∗+1(p) = {[2, 3, 1]T } and that implies SG2 (p) = SGM (p) = SGP (p) = SGM (p) ∩ SGP (p) =
SGMP (p) = SGPM (p) = {[2, 3, 1]T }.

Case 4.4. Assume that p solves






s1,2 ≥ ν∗ + 1
s2,3 = ν∗

s3,1 = ν∗

Then Cν∗+1(p) = SG2 (p) = {[1, 2, 3]T , [1, 3, 2]T , [3, 1, 2]T } and SGP (p) = {[1, 2, 3]T , [3, 1, 2]T }. Let us
compare now v1, v2 and v5. Surely we have that v1 ≥ v2, v5. Note that it cannot be v1 = v5 because
from the equality s2,3 = s3,1 we get v3 = v6 and (6) is violated. Assume now by contradiction that
v1 = v2. From

6
∑

j=1

vj = h, (v1 + v3 + v4) + (v4 + v5 + v6) = 2ν∗,

we get v4 − v2 = 2ν∗ − h. Since v1 = v2 and 2ν∗ − h ≥ 1, we have v4 ≥ v1 + 1 and the contradiction
is found. As a consequence, v1 > v2, v5 and then SGM (p) = SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) =
{[1, 2, 3]T }.

Case 4.5. Assume that p solves






s1,2 = ν∗

s2,3 ≥ ν∗ + 1
s3,1 = ν∗

Then Cν∗+1(p) = SG2 (p) = {[1, 2, 3]T , [2, 1, 3]T , [2, 3, 1]T } and SGP (p) = {[1, 2, 3]T , [2, 3, 1]T }. Let us
compare now v1, v3 and v4. Surely we have that v1 ≥ v3, v4. Note that it cannot be v1 = v4 because
from the equality s1,2 = s3,1 we get v2 = v6 and (6) is violated. Assume now by contradiction that
v1 = v3. From

6
∑

j=1

vj = h, (v1 + v2 + v5) + (v4 + v5 + v6) = 2ν∗,

we get v5 − v3 = 2ν∗ − h. Since v1 = v3 and 2ν∗ − h ≥ 1, we have v5 ≥ v1 + 1 and the contradiction
is found. As a consequence, v1 > v3, v4 and then SGM (p) = SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) =
{[1, 2, 3]T },

Case 4.6. Assume that p solves






s1,2 = ν∗

s2,3 = ν∗

s3,1 ≥ ν∗ + 1
(9)

Then Cν∗+1(p) = SG2 (p) = {[2, 3, 1]T , [3, 1, 2]T , [3, 2, 1]T } and a simple computation shows that
SGP (p) = {[2, 3, 1]T , [3, 1, 2]T }. Let us compare now v4, v5 and v6. Note also that it cannot be
v4 = v5 because from the equality s1,2 = s2,3 we get v2 = v3 and (6) is violated. Thus, there are six
further sub-cases to analyze.
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Case 4.6.1. if v4 > v5, v6 then SGM (p) = SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) = {[2, 3, 1]T },

Case 4.6.2. if v5 > v4, v6 then SGM (p) = SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) = {[3, 1, 2]T },

Case 4.6.3. if v6 > v4 > v5 then SGM (p) = SGMP (p) = {[3, 2, 1]T }, SGM (p) ∩ SGP (p) = ∅, and
SGPM (p) = {[2, 3, 1]T }.

Case 4.6.4. if v6 > v5 > v4 then SGM (p) = SGMP (p) = {[3, 2, 1]T }, SGM (p) ∩ SGP (p) = ∅, and
SGPM (p) = {[3, 1, 2]T }.

Case 4.6.5. if v4 = v6 > v5, then S
G
M (p) = {[2, 3, 1]T , [3, 2, 1]T }. That implies that SGM (p) ∩ SGP (p) =

{[2, 3, 1]T }, and SGMP (p) = SGPM (p) = {[2, 3, 1]T }.

Case 4.6.6. if v5 = v6 > v4, then S
G
M (p) = {[3, 1, 2]T , [3, 2, 1]T }. That implies that SGM (p) ∩ SGP (p) =

{[3, 1, 2]T }, and SGMP (p) = SGPM (p) = {[3, 1, 2]T }.

Case 4.7 Assume that p solves






s1,2 = ν∗

s2,3 = ν∗

s3,1 = ν∗

Then Cν∗+1(p) = SG2 (p) = L(N) and SGP (p) = {[1, 2, 3]T , [2, 3, 1]T , [3, 1, 2]T }. Assume by contradic-
tion there is j∗ ∈ {2, . . . , 6} such that v1 = vj∗ . From the system above we deduce that

v1 − v6 = v4 − v2 = v5 − v3.

If j∗ ∈ {2, 3, 6}, then we have v1 = v6, v4 = v2 and v5 = v3 and that implies the contradiction 2 | h.
If j∗ ∈ {4, 5}, then (6) is violated and the contradiction is found. Then v1 > vj for all j ∈ {2, . . . , 6},
and that implies SGM (p) = SGM (p) ∩ SGP (p) = SGMP (p) = SGPM (p) = {[1, 2, 3]T }.

6.3 Last part of the proof

Statements 1 and 2. By Section 6.2 and using Proposition 4, we deduce that there exists p ∈ P such
that |SGM (p)| ≥ 2 if and only if, according to the Cases 4.6.5 and 4.6.6, there exist (v1, . . . , v6) ∈ N

6
0

and ν∗ ∈ {νh, . . . , h− 1} such that

a) v1 ≥ vj for all j ∈ {1, . . . , 6},

b)
∑6
j=1 vj = h,

c) (6) and (9) hold true,

d) v4 = v6 > v5 or v5 = v6 > v4.

Since h ∈ A ∪B, where

A = {5, 7, 11}, B = {13 + 6k + 4r : k ∈ N0, r ∈ {0, 1}},

we are left with showing that there exist (v1, . . . , v6) and ν
∗ satisfying a), b), c) and d) if and only

if h ∈ B. If h = 13 + 6k + 4r for some k ∈ N0 and r ∈ {0, 1}, then νh = 7 + 3k + 2r and a simple
check shows that

(v1, v2, v3, v4, v5, v6) = (4 + k + r, k, 1 + k, 2 + k + r, 3 + k + r, 3 + k + r), ν∗ = νh

satisfy a), b), c) and d) with v5 = v6.
Consider then h ∈ {5, 7, 11} and assume by contradiction there exist (v1, . . . , v6) and ν

∗ satisfying
a), b), c) and v4 = v6 > v5. A similar argument works also if v5 = v6 > v4. From b) and (9) we get
v1 − v6 = 2ν∗ − h ≥ 1. Then there exists, t ∈ N0 such that v6 = t, v4 = t and v1 = t + (2ν∗ − h).
Moreover, since v5 < v6, we also have that v5 ≤ t− 1. We have then

3t− 1 ≥ v4 + v5 + v6 = s3,1 ≥ ν∗ + 1 ≥
h+ 1

2
+ 1,
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that is, t ≥ h+5
6 , and also

h ≥ v1 + v4 + v6 = 3t+ 2ν∗ − h ≥ 3t+ 1,

that is, t ≤ h−1
3 . Let us discuss now the three possible values of h.

• If h = 5, then h+5
6 > h−1

3 and the contradiction follows.

• If h = 7, then ν∗ ∈ {4, 5, 6}, t = 2 and v1 + v4 + v6 ≥ 7. As a consequence, v5 = 0 and
s3,1 = v4 + v5 + v6 = 4 6∈ {5, 6, 7} so that the contradiction follows.

• If h = 11, then ν∗ ∈ {6, 7, 8, 9, 10} and t = 3. If ν∗ = 6, then v4 = v6 = 3 and v1 = 4. Since
s3,1 = v4 + v5 + v6 ≥ ν∗ + 1 = 7, it has to be v2 = v3 = 0 and v5 = 1. As a consequence,
s1,2 = v1 + v2 + v5 = 5 < ν∗ and the contradiction is found. If ν∗ ≥ 7, then v1 + v4 + v6 ≥ 12
and the contradiction follows.

Statement 3. By Section 6.2 and Proposition 4, we deduce that there exists p ∈ P such that
|SGP (p)| ≥ 2 if, according to Case 2.3, there exist (v1, . . . , v6) ∈ N

6
0 and ν∗ ∈ {νh, . . . , h−1} such that

a) v1 ≥ vj for all j ∈ {1, . . . , 6},

b)
∑6
j=1 vj = h,

c) v2 = v3, v4 = v5, and v1 + v2 + v5 = v4 + v5 + v6 > h/2,

It can be immediately checked that if h = 5 + 6k + 2r for some k ∈ N ∪ {0} and r ∈ {0, 1}, then we
have that

(v1, v2, v3, v4, v5, v6) = (2 + k + r, k, k, 1 + k, 1 + k, 1 + k + r)

satisfy a), b), and c).

Statements 4 and 5. They follow from Section 6.2 and Proposition 4.

Statements 6 and 7. By Section 6.2 and Proposition 4, we deduce that SGM (p) ∩ SGP (p) = SGMP (p) =
SGPM (p) for all p ∈ P if, according to Cases 4.6.3 and 4.6.4, there are no (v1, . . . , v6) ∈ N

6
0 and

ν∗ ∈ {νh, . . . , h− 1} such that

a) v1 ≥ vj for all j ∈ {1, . . . , 6},

b)
∑6
j=1 vj = h,

c) (6) and (9) hold true,

d) v6 > v4, v5,

while there exists p ∈ P such that SGM (p) ∩ SGP (p) = ∅ and SGMP (p) 6= SGPM (p) otherwise.
We have that h ∈ A ∪B, where

A = {5, 7, 11, 13}, B = {17 + 6k + 2r : k ∈ N0, r ∈ {0, 1}},

so that we are left with showing that there exist (v1, . . . , v6) and ν
∗ satisfying a), b), c) and d) if and

only if h ∈ B. A simple computation show that if h = 17 + 6k + 2r for some k ∈ N0 and r ∈ {0, 1},
then νh = 9 + 3k + r and we have that

(v1, v2, v3, v4, v5, v6) = (6 + k, k, 1 + k, 2 + k + r, 3 + k + r, 5 + k), ν∗ = νh (10)

satisfy a), b), c) and d).
Consider then h ∈ {5, 7, 11, 13}. Assume by contradiction there exist (v1, . . . , v6) and ν

∗ satisfying
a), b), c) and d). From b) and (9) we get

v5 − v3 ≥ 2ν∗ − h+ 1 ≥ 2, v4 − v2 ≥ 2ν∗ − h+ 1 ≥ 2, v1 − v6 = 2ν∗ − h ≥ 1

as ν∗ ≥ νh. Moreover, from (6) and (9), we also have that both v2 6= v3 and v4 6= v5. Assuming then
that v2 < v3, using a) and d) we obtain

v2 ≥ 0, v3 ≥ 1, v4 ≥ v2 + 2 ≥ 2, v5 ≥ v3 + 2 ≥ 3, v6 ≥ v5 + 1 ≥ 4, v1 ≥ v6 + 1 ≥ 5

As a consequence, h =
∑6
j=1 vj ≥ 15 and the contradiction is found. If v3 < v2, a similar argument

leads again to a contradiction.
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7 Proof of Proposition 13

Statement 1. We have that h ∈ {5, 7, 11, 13} or h = 17 + 6k + 2r for some k ∈ N0 and r ∈ {0, 1}.
If h = 5, then n = 4. Define p ∈ P as

p =









1 1 3 4 4
2 2 4 2 3
3 3 2 1 2
4 4 1 3 1









,

A computation shows that StabG(p) ≤ Sh × {id} × {id} so that SG1 (p) = L(N). Moreover, ν(p) = 4
and SG2 (p) = C4(p) = L(N). As a consequence, SGM (p) = {[1, 2, 3, 4]T }. However, it is easily checked
that

A(p, [2, 1, 3, 4]T ) > A(p, [1, 2, 3, 4]T )

so that [1, 2, 3, 4]T 6∈ SGP (p) and S
G
M (p) ∩ SGP (p) = ∅.

If h = 7, then n ∈ {4, 5, 6}. Define p ∈ P as

p =

















1 1 2 1 4 3 4
2 2 4 3 1 2 3
3 3 1 2 3 4 1
4 4 3 4 2 1 2
(5) (5) (5) (5) (5) (5) (5)
(6) (6) (6) (6) (6) (6) (6)

















,

where the last rows with entries in brackets have to be added according to n. A computation shows
that StabG(p) ≤ Sh × {id} × {id} so that SG1 (p) = L(N). Moreover, ν(p) = 5 and

SG2 (p) = C5(p) = {[1, 3, 2, 4, (5), (6)]T , [1, 2, 3, 4, (5), (6)]T , [1, 2, 4, 3, (5), (6)]T },

SGM (p) = {[1, 2, 3, 4, (5), (6)]T }, and SGP (p) = {[1, 3, 2, 4, (5), (6)]T },

so that SGM (p) ∩ SGP (p) = ∅.
If h = 11, then n ∈ {4, . . . , 10}. Define p ∈ P as

p =























1 1 2 1 4 3 4 1 2 3 4
2 2 4 3 1 2 3 2 1 4 3
3 3 1 2 3 4 1 3 4 1 2
4 4 3 4 2 1 2 4 3 2 1
(5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)
...

...
...

...
...

...
...

...
...

...
...

(10) (10) (10) (10) (10) (10) (10) (10) (10) (10) (10)























,

and note that StabG(p) ≤ Sh × {id} × {id} so that SG1 (p) = L(N). Moreover, ν(p) = 7 and

SG2 (p) = C7(p) = {[1, 3, 2, 4, (5), . . . , (10)]T , [1, 2, 3, 4, (5), . . . , (10)]T , [1, 2, 4, 3, (5), . . . , (10)]T },

SGM (p) = {[1, 2, 3, 4, (5), . . . , (10)]T }, and SGP (p) = {[1, 3, 2, 4, (5), . . . , (10)]T },

so that SGM (p) ∩ SGP (p) = ∅.
If h = 13, then n ∈ {4, . . . , 12}. Define p ∈ P as

p =























1 1 2 1 4 3 4 1 2 3 4 1 4
2 2 4 3 1 2 3 2 1 4 3 2 3
3 3 1 2 3 4 1 3 4 1 2 3 2
4 4 3 4 2 1 2 4 3 2 1 4 1
(5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)
...

...
...

...
...

...
...

...
...

...
...

...
...

(12) (12) (12) (12) (12) (12) (12) (12) (12) (12) (12) (12) (12)























,
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and note that StabG(p) ≤ Sh × {id} × {id} so that SG1 (p) = L(N). Moreover, ν(p) = 8 and

SG2 (p) = C8(p) = {[1, 3, 2, 4, (5), . . . , (12)]T , [1, 2, 3, 4, (5), . . . , (12)]T , [1, 2, 4, 3, (5), . . . , (12)]T },

SGM (p) = {[1, 2, 3, 4, (5), . . . , (12)]T }, and SGP (p) = {[1, 3, 2, 4, (5), . . . , (12)]T },

so that SGM (p) ∩ SGP (p) = ∅.
Finally assume that h = 17+6k+2r for some k ∈ N0 and r ∈ {0, 1}. Consider then any preference

profile p ∈ P such that

|{i ∈ H : pi = [1, 2, 3, 4, . . . , n]T }| = 6 + k,

|{i ∈ H : pi = [1, 3, 2, 4, . . . , n]T }| = k,

|{i ∈ H : pi = [2, 1, 3, 4, . . . , n]T }| = 1 + k,

|{i ∈ H : pi = [2, 3, 1, 4, . . . , n]T }| = 2 + k + r,

|{i ∈ H : pi = [3, 1, 2, 4, . . . , n]T }| = 3 + k + r,

|{i ∈ H : pi = [3, 2, 1, 4, . . . , n]T }| = 5 + k,

and note that it has the same structure of those preference profiles described in (10). Then we have
that

SGM (p) = {[3, 2, 1, 4, . . . , n]T }, and SGP (p) = {[3, 1, 2, 4, . . . , n]T },

so that SGM (p) ∩ SGP (p) = ∅.

Statement 2. Consider at first n = 4. Since gcd(h, n!) = 1 we have, in particular, h ≥ 5 and h is odd.
Note that h−1

2 ≥ 2 and h+3
2 ≤ h− 1. Consider now p ∈ P such that, for every i ∈ {1, . . . , h−1

2 },

pi = [1, 2, 3, 4]T , ph−1
2 +i = [4, 1, 2, 3]T , ph = [3, 4, 1, 2]T . (11)

First of all, note that there does not exist (ϕ, ψ) ∈ Sh × Sn such that (ϕ, ψ, ρ0) ∈ StabG(p). Indeed,
if by contradiction there is (ϕ, ψ, ρ0) ∈ StabG(p), then it has to be ψ[3, 4, 1, 2]T ρ0 = [3, 4, 1, 2]T and
then ψ = (14)(23). Since

ψ[1, 2, 3, 4]T ρ0 = [1, 2, 3, 4]T , ψ[4, 1, 2, 3]T ρ0 = [2, 3, 4, 1]T 6= [4, 1, 2, 3]T ,

we have the contradiction. Then we have that SG1 (p) = L(N). It is immediate to check that

Ch+1
2
(p) = ∅, Ch+3

2
(p) =

{

[1, 2, 3, 4]T , [1, 2, 4, 3]T , [1, 4, 2, 3]T , [4, 1, 2, 3]T
}

.

Then SG2 (p) = Ch+3
2
(p) and

SGM (p) = SGMP (p) = SGP (p) = SGPM (p) =
{

[1, 2, 3, 4]T , [4, 1, 2, 3]T
}

.

Assume now that n ≥ 5. Since gcd(h, n!) = 1 we have, in particular, h ≥ n + 1 and h is odd.
Note that h−1

2 ≥ 2 and h+3
2 ≤ h− 1. Consider now p ∈ P such that, for every i ∈ {1, . . . , h−1

2 },

pi = [1, 2, 3, 4, 5, . . . , n]T , ph−1
2 +i = [4, 1, 2, 3, 5, . . . , n]T , ph = [3, 4, 1, 2, 5, . . . , n]T . (12)

First of all, note that there does not exist (ϕ, ψ) ∈ Sh × Sn such that (ϕ, ψ, ρ0) ∈ StabG(p). Indeed,
assume by contradiction there is (ϕ, ψ, ρ0) ∈ StabG(p). Consider then p∗ = p(id,id,ρ0) ∈ P. The
preference profile p∗ has the property that, for every i ∈ H, the top ranked alternative of p∗i is n. As
a consequence we have that p = p(ϕ,ψ,ρ0) = p∗(ϕ,ψ,id) ∈ P has the property that, for every i ∈ H, the
top ranked alternative of pi is ψ(n). But that is a contradiction as the top ranked alternative of p1
is 1 while the top ranked alternative of ph is 3. Then we have that SG1 (p) = L(N). It is immediate
to check that

Ch+1
2
(p) = ∅,

Ch+3
2
(p) =

{

[1, 2, 3, 4, 5, . . . , n]T , [1, 2, 4, 3, 5, . . . , n]T , [1, 4, 2, 3, 5, . . . , n]T , [4, 1, 2, 3, 5, . . . , n]T
}

.

Then SG2 (p) = Ch+3
2
(p) and

SGM (p) = SGMP (p) = SGP (p) = SGPM (p) =
{

[1, 2, 3, 4, 5, . . . , n]T , [4, 1, 2, 3, 5, . . . , n]T
}

.
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8 The algorithm

When n = 3 and gcd(h, n!) = 1, a careful analysis of the proof of Proposition 12 allows to compute
the value of FMP and FPM on any preference profile. Given p ∈ P, the algorithm to compute
FMP (p) and FPM (p) is described below. In what follows, let ψ1 = id, ψ2 = (23), ψ3 = (12),
ψ4 = (123), ψ5 = (132), and ψ6 = (13).

Step 0.

Compute, for every j ∈ {1, . . . , 6}, vj(p) as defined in (4). Choose k ∈ {1, . . . , 6} such that

vk(p) = max
j∈{1,...,6}

vj(p).

Define p∗ = p(id,ψ
−1
k
,id) and compute vj(p

∗) and, for every x, y ∈ {1, 2, 3} with x 6= y, sx,y(p
∗) as

defined in (5). Write vj instead of vj(p
∗) and sx,y instead of sx,y(p

∗). Note that vk(p) = v1(p
∗) ≥

vj(p
∗) for all j ∈ {1, . . . , 6}.

Step 1.

If v1 = v5, v3 = v6 and s1,2 ≤ s2,3, then F
MP (p) = FPM (p) = ψk[2, 3, 1]

T .
If v1 = v5, v3 = v6 and s1,2 > s2,3, then F

MP (p) = FPM (p) = ψk[1, 3, 2]
T .

If v1 6= v5 or v3 6= v6 then go to Step 2.

Step 2.

If v2 = v3, v4 = v5 and s3,1 ≤ s1,2, then F
MP (p) = FPM (p) = ψk[1, 2, 3]

T .
If v2 = v3, v4 = v5 and s3,1 > s1,2 then FMP (p) = FPM (p) = ψk[3, 2, 1]

T .
If v2 6= v3 or v4 6= v5, then go to Step 3.

Step 3.

If v1 = v4, v2 = v6 and s2,3 ≤ s1,2, then F
MP (p) = FPM (p) = ψk[3, 1, 2]

T .
If v1 = v4, v2 = v6 and s2,3 > s1,2, then F

MP (p) = FPM (p) = ψk[2, 1, 3]
T .

If v1 6= v4 and v2 6= v6, then go to Step 4.

Step 4.

If s1,2 > h/2, s2,3 > h/2 and s3,1 < h/2, then FMP (p) = FPM (p) = ψk[1, 2, 3]
T .

If s1,2 > h/2, s2,3 < h/2 and s3,1 > h/2, then FMP (p) = FPM (p) = ψk[3, 1, 2]
T .

If s1,2 > h/2, s2,3 < h/2 and s3,1 < h/2, then FMP (p) = FPM (p) = ψk[1, 3, 2]
T .

If s1,2 < h/2, s2,3 > h/2 and s3,1 > h/2, then FMP (p) = FPM (p) = ψk[2, 3, 1]
T .

If s1,2 < h/2, s2,3 > h/2 and s3,1 < h/2, then FMP (p) = FPM (p) = ψk[2, 1, 3]
T .

If s1,2 < h/2, s2,3 < h/2 and s3,1 > h/2, then FMP (p) = FPM (p) = ψk[3, 2, 1]
T .

If s1,2 > h/2, s2,3 > h/2 and s3,1 > h/2, go to Step 5.

Step 5.

If s1,2, s2,3 > s3,1, then F
MP (p) = FPM (p) = ψk[1, 2, 3]

T .
If s1,2, s3,1 > s2,3, then F

MP (p) = FPM (p) = ψk[3, 1, 2]
T .

If s2,3, s3,1 > s1,2, then F
MP (p) = FPM (p) = ψk[2, 3, 1]

T .
If s1,2 > s2,3 = s3,1, then F

MP (p) = FPM (p) = ψk[1, 2, 3]
T .

If s2,3 > s1,2 = s3,1, then F
MP (p) = FPM (p) = ψk[1, 2, 3]

T .
If s2,3 = s1,2 = s3,1, then F

MP (p) = FPM (p) = ψk[1, 2, 3]
T .

If s3,1 > s1,2 = s2,3, then go to Step 6.

Step 6.

If v4 > v5, then

FMP (p) =

{

ψk[2, 3, 1]
T if v4 ≥ v6

ψk[3, 2, 1]
T if v6 > v4

, FPM (p) = ψk[2, 3, 1]
T

If v5 > v4, then

FMP (p) =

{

ψk[3, 1, 2]
T if v5 ≥ v6

ψk[3, 2, 1]
T if v6 > v5

, FPM (p) = ψk[3, 1, 2]
T
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